Tag: procedure
Bibliography items where occurs: 47
if you need more than one keyword, add on the URL each keyword prefixed by _ (underscore)- total up to 50 characters
- Exciting, Useful, Worrying, Futuristic:
Public Perception of Artificial Intelligence in 8 Countries / 2001.00081 / ISBN:https://doi.org/10.48550/arXiv.2001.00081 / Published by ArXiv / on (web) Publishing site
- 3 Methodology
- The Different Faces of AI Ethics Across the World: A Principle-Implementation Gap Analysis / 2206.03225 / ISBN:https://doi.org/10.48550/arXiv.2206.03225 / Published by ArXiv / on (web) Publishing site
- 5 Evaluation of Ethical Principle Implementations
- ESR: Ethics and Society Review of Artificial Intelligence Research / 2106.11521 / ISBN:https://doi.org/10.48550/arXiv.2106.11521 / Published by ArXiv / on (web) Publishing site
- 3 The ESR Process
5 Discussion - On the Current and Emerging Challenges of Developing Fair and Ethical AI Solutions in Financial Services / 2111.01306 / ISBN:https://doi.org/10.48550/arXiv.2111.01306 / Published by ArXiv / on (web) Publishing site
- 3 Practical Challengesof Ethical AI
- A primer on AI ethics via arXiv- focus 2020-2023 / Kaggle / on (web) Publishing site
- Section 4: Considerations and conclusions
- Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects / 2304.08275 / ISBN:https://doi.org/10.48550/arXiv.2304.08275 / Published by ArXiv / on (web) Publishing site
- II. Underlying Aspects
III. Interactions between Aspects - From Military to Healthcare: Adopting and Expanding Ethical Principles for Generative Artificial Intelligence / 2308.02448 / ISBN:https://doi.org/10.48550/arXiv.2308.02448 / Published by ArXiv / on (web) Publishing site
- GREAT PLEA Ethical Principles for Generative AI in
Healthcare
- Normative Ethics Principles for Responsible AI Systems: Taxonomy and Future Directions / 2208.12616 / ISBN:https://doi.org/10.48550/arXiv.2208.12616 / Published by ArXiv / on (web) Publishing site
- 3 Taxonomy of ethical principles
- Bad, mad, and cooked: Moral responsibility for civilian harms in human-AI military teams / 2211.06326 / ISBN:https://doi.org/10.48550/arXiv.2211.06326 / Published by ArXiv / on (web) Publishing site
- Introduction
Responsibility in War - A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation / 2305.11391 / ISBN:https://doi.org/10.48550/arXiv.2305.11391 / Published by ArXiv / on (web) Publishing site
- 1 Introduction
2 Large Language Models - Getting pwn'd by AI: Penetration Testing with Large Language Models / 2308.00121 / ISBN:https://doi.org/10.48550/arXiv.2308.00121 / Published by ArXiv / on (web) Publishing site
- 1 Introduction
2 Background
3 LLM-based penetration testing - Targeted Data Augmentation for bias mitigation / 2308.11386 / ISBN:https://doi.org/10.48550/arXiv.2308.11386 / Published by ArXiv / on (web) Publishing site
- 3 Targeted data augmentation
- Building Trust in Conversational AI: A Comprehensive Review and Solution Architecture for Explainable, Privacy-Aware Systems using LLMs and Knowledge Graph / 2308.13534 / ISBN:https://doi.org/10.48550/arXiv.2308.13534 / Published by ArXiv / on (web) Publishing site
- II. Methods and training process of LLMs
Appendix A industry-wide LLM usecases - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? / 2308.15399 / ISBN:https://doi.org/10.48550/arXiv.2308.15399 / Published by ArXiv / on (web) Publishing site
- References
- The AI Revolution: Opportunities and Challenges for the Finance Sector / 2308.16538 / ISBN:https://doi.org/10.48550/arXiv.2308.16538 / Published by ArXiv / on (web) Publishing site
- 3 Benefits of AI use in the finance sector
6 Regulation of AI and regulating through AI - The Impact of Artificial Intelligence on the Evolution of Digital Education: A Comparative Study of OpenAI Text Generation Tools including ChatGPT, Bing Chat, Bard, and Ernie / 2309.02029 / ISBN:https://doi.org/10.48550/arXiv.2309.02029 / Published by ArXiv / on (web) Publishing site
- 3. ChatGPT Training Process
6. Conclusion - Pathway to Future Symbiotic Creativity / 2209.02388 / ISBN:https://doi.org/10.48550/arXiv.2209.02388 / Published by ArXiv / on (web) Publishing site
- Part 2 - 1 Biometric Signal Sensing Technologies and Emotion Data
Part 3 - 3 Comparison with Generative Models
Part 3 - 4 Demonstration of the Proposed Framework
Part 4 NFTs and the Future Art Economy - FUTURE-AI: Guiding Principles and Consensus
Recommendations for Trustworthy Artificial Intelligence in
Medical Imaging / 2109.09658 / ISBN:https://doi.org/10.48550/arXiv.2109.09658 / Published by ArXiv / on (web) Publishing site
- 3. Universality - For Standardised AI in Medical Imaging
4. Traceability - For Transparent and Dynamic AI in Medical Imaging
6. Robustness - For Reliable AI in Medical Imaging - The Cambridge Law Corpus: A Corpus for Legal AI Research / 2309.12269 / ISBN:https://doi.org/10.48550/arXiv.2309.12269 / Published by ArXiv / on (web) Publishing site
- Legal References
Cambridge Law Corpus: Datasheet - EALM: Introducing Multidimensional Ethical Alignment in
Conversational Information Retrieval / 2310.00970 / ISBN:https://doi.org/10.48550/arXiv.2310.00970 / Published by ArXiv / on (web) Publishing site
- Appendix
- Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities / 2310.08565 / ISBN:https://doi.org/10.48550/arXiv.2310.08565 / Published by ArXiv / on (web) Publishing site
- I. Introduction and Motivation
IV. Attack Surfaces
V. Ethical & Legal Concerns - Deepfakes, Phrenology, Surveillance, and More! A Taxonomy of AI Privacy Risks / 2310.07879 / ISBN:https://doi.org/10.48550/arXiv.2310.07879 / Published by ArXiv / on (web) Publishing site
- 3 Method
5 Discussion - ClausewitzGPT Framework A New Frontier in Theoretical Large Language Model Enhanced Information Operations / 2310.07099 / ISBN:https://doi.org/10.48550/arXiv.2310.07099 / Published by ArXiv / on (web) Publishing site
- References
- The AI Incident Database as an Educational Tool to Raise Awareness of AI Harms: A Classroom Exploration of Efficacy, Limitations, & Future Improvements / 2310.06269 / ISBN:https://doi.org/10.48550/arXiv.2310.06269 / Published by ArXiv / on (web) Publishing site
- 4 Discussion
- A Review of the Ethics of Artificial Intelligence and its Applications in the United States / 2310.05751 / ISBN:https://doi.org/10.48550/arXiv.2310.05751 / Published by ArXiv / on (web) Publishing site
- 1. Introduction
2. Literature Review - A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics / 2310.05694 / ISBN:https://doi.org/10.48550/arXiv.2310.05694 / Published by ArXiv / on (web) Publishing site
- I. Introduction
III. FROM PLMS TO LLMS FOR HEALTHCARE
VI. IMPROVING FAIRNESS, ACCOUNTABILITY, TRANSPARENCY, AND ETHICS - Regulation and NLP (RegNLP): Taming Large Language Models / 2310.05553 / ISBN:https://doi.org/10.48550/arXiv.2310.05553 / Published by ArXiv / on (web) Publishing site
- 4 Scientific Expertise, Social Media and
Regulatory Capture
- Ethics of Artificial Intelligence and Robotics in the Architecture, Engineering, and Construction Industry / 2310.05414 / ISBN:https://doi.org/10.48550/arXiv.2310.05414 / Published by ArXiv / on (web) Publishing site
- 4. Systematic Review and Scientometric Analysis
5. Ethical Issues of AI and Robotics in AEC Industry - Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial Intelligence / 2309.14617 / ISBN:https://doi.org/10.48550/arXiv.2309.14617 / Published by ArXiv / on (web) Publishing site
- Method
- Risk of AI in Healthcare: A Comprehensive Literature Review and Study Framework / 2309.14530 / ISBN:https://doi.org/10.48550/arXiv.2309.14530 / Published by ArXiv / on (web) Publishing site
- 3. Clinical Risks
- Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust / 2309.10318 / ISBN:https://doi.org/10.48550/arXiv.2309.10318 / Published by ArXiv / on (web) Publishing site
- Different Types of Trust
Trust and AI Ethics Principles - AI & Blockchain as sustainable teaching and learning tools to cope with the 4IR / 2305.01088 / ISBN:https://doi.org/10.48550/arXiv.2305.01088 / Published by ArXiv / on (web) Publishing site
- 1. Introduction
2. AI and blockchain in education: An overview of the benefits and challenges
4. Blockchain-based credentialing and certification
5. AI-powered assessment and evaluation - Ensuring Trustworthy Medical Artificial Intelligence through Ethical and Philosophical Principles / 2304.11530 / ISBN:https://doi.org/10.48550/arXiv.2304.11530 / Published by ArXiv / on (web) Publishing site
- Ethical guidelines for medical AI model deployment
Discussion
Conclusion and future directions - Responsible AI Pattern Catalogue: A Collection of Best Practices for AI Governance and Engineering / 2209.04963 / ISBN:https://doi.org/10.48550/arXiv.2209.04963 / Published by ArXiv / on (web) Publishing site
- 3 Governance Patterns
- FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare / 2309.12325 / ISBN:https://doi.org/10.48550/arXiv.2309.12325 / Published by ArXiv / on (web) Publishing site
- Appendix
A
Tables
- Language Agents for Detecting Implicit Stereotypes in Text-to-Image Models at Scale / 2310.11778 / ISBN:https://doi.org/10.48550/arXiv.2310.11778 / Published by ArXiv / on (web) Publishing site
- 1 Introduction
- Specific versus General Principles for Constitutional AI / 2310.13798 / ISBN:https://doi.org/10.48550/arXiv.2310.13798 / Published by ArXiv / on (web) Publishing site
- 2 AI feedback on specific problematic AI traits
4 Reinforcement Learning with Good-for-Humanity Preference Models
D Generalization to Other Traits - The Self 2.0: How AI-Enhanced Self-Clones Transform Self-Perception
and Improve Presentation Skills / 2310.15112 / ISBN:https://doi.org/10.48550/arXiv.2310.15112 / Published by ArXiv / on (web) Publishing site
- 3 Method
- AI Alignment and Social Choice: Fundamental
Limitations and Policy Implications / 2310.16048 / ISBN:https://doi.org/10.48550/arXiv.2310.16048 / Published by ArXiv / on (web) Publishing site
- 3 Arrow-Sen Impossibility Theorems for RLHF
- A Comprehensive Review of
AI-enabled Unmanned Aerial Vehicle:
Trends, Vision , and Challenges / 2310.16360 / ISBN:https://doi.org/10.48550/arXiv.2310.16360 / Published by ArXiv / on (web) Publishing site
- I. Introduction
References - Unpacking the Ethical Value Alignment in Big Models / 2310.17551 / ISBN:https://doi.org/10.48550/arXiv.2310.17551 / Published by ArXiv / on (web) Publishing site
- References
- AI for Open Science: A Multi-Agent Perspective for
Ethically Translating Data to Knowledge / 2310.18852 / ISBN:https://doi.org/10.48550/arXiv.2310.18852 / Published by ArXiv / on (web) Publishing site
- 2 Background and Related Work
- Artificial Intelligence Ethics Education in Cybersecurity: Challenges and Opportunities: a
focus group report / 2311.00903 / ISBN:https://doi.org/10.48550/arXiv.2311.00903 / Published by ArXiv / on (web) Publishing site
- Educational Challenges of Teaching AI Ethics in Cybersecurity and Core Ethical
Principles
Conclusion - Human Participants in AI Research: Ethics and Transparency in Practice / 2311.01254 / ISBN:https://doi.org/10.48550/arXiv.2311.01254 / Published by ArXiv / on (web) Publishing site
- 4 Principles in Practice: Guidelines for AI Research with Human Participants
B Placing Research Ethics for Human Participants in Historical Context - LLMs grasp morality in concept / 2311.02294 / ISBN:https://doi.org/10.48550/arXiv.2311.02294 / Published by ArXiv / on (web) Publishing site
- 3 The Meaning Model
- Educating for AI Cybersecurity Work and Research: Ethics, Systems Thinking, and
Communication Requirements / 2311.04326 / ISBN:https://doi.org/10.48550/arXiv.2311.04326 / Published by ArXiv / on (web) Publishing site
- Literature Review
Research questions - Kantian Deontology Meets AI Alignment: Towards
Morally Robust Fairness Metrics / 2311.05227 / ISBN:https://doi.org/10.48550/arXiv.2311.05227 / Published by ArXiv / on (web) Publishing site
- Abstract
2 Overview of Kantian Deontology
4 Deontological AI Alignment
5 Conclusion