_
RobertoLofaro.com - Knowledge Portal
Change, with and without technology
for updates on publications, follow @changerulebook on either Instagram or Twitter - you can also support on Patreon or subscribe on YouTube


_

You are now here: AI Ethics Primer - search within the bibliography - version 0.3 of 2023-08-13 > (tag cloud) >tag_selected: ment


Tag: ment

Bibliography items where occurs: 84
if you need more than one keyword, add on the URL each keyword prefixed by _ (underscore)- total up to 50 characters
The AI Index 2022 Annual Report / 2205.03468 / ISBN:https://doi.org/10.48550/arXiv.2205.03468 / Published by ArXiv / on (web) Publishing site
Report highlights
Chapter 1 Reseach and Development
Chapter 2 Technical Performance
Chapter 3 Technical AI Ethics
Chapter 4 The Economy and Education
Chapter 5 AI Policy and Governance
Appendix


Exciting, Useful, Worrying, Futuristic: Public Perception of Artificial Intelligence in 8 Countries / 2001.00081 / ISBN:https://doi.org/10.48550/arXiv.2001.00081 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background
3 Methodology
4 Findings
5 Discussion
6 Conclusions
References
A Questionnaire - Selected Questions


Ethics of AI: A Systematic Literature Review of Principles and Challenges / 2109.07906 / ISBN:https://doi.org/10.48550/arXiv.2109.07906 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background
3 Research Method
5 Detail results and analysis
6 Threats to validity
7 Conclusions and future directions
References
9 Appendices


AI Ethics Issues in Real World: Evidence from AI Incident Database / 2206.07635 / ISBN:https://doi.org/10.48550/arXiv.2206.07635 / Published by ArXiv / on (web) Publishing site
Abstract
1Introduction
2 Related Work
3 Method
4 Results
5 Discussion
References


The Different Faces of AI Ethics Across the World: A Principle-Implementation Gap Analysis / 2206.03225 / ISBN:https://doi.org/10.48550/arXiv.2206.03225 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Study Methodology
4 Evaluation of Ethical AI Principles
5 Evaluation of Ethical Principle Implementations
6 Gap Mitigation
7 Threats to Validiity
8 Conclusion
References


A Framework for Ethical AI at the United Nations / 2104.12547 / ISBN:https://doi.org/10.48550/arXiv.2104.12547 / Published by ArXiv / on (web) Publishing site
Executive summary
Introductionn
1. Problems with AI
2. Defining ethical AI
3. Implementing ethical AI
Conclusion


Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance / 2206.11922 / ISBN:https://doi.org/10.48550/arXiv.2206.11922 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related Work
3 Methodology
4 Results
5 Discussion
6 Conclusion
Acknowledgments
References


Beyond Near- and Long-Term: Towards a Clearer Account of Research Priorities in AI Ethics and Society / 2001.04335 / ISBN:https://doi.org/10.48550/arXiv.2001.04335 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 The Near-Long
3 The Problem with the Near/Long-Term Distinction
4 A Clearer Account of Research Priorities and Disagreements
Recommendations and Conclusion
References


ESR: Ethics and Society Review of Artificial Intelligence Research / 2106.11521 / ISBN:https://doi.org/10.48550/arXiv.2106.11521 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 The ESR Process
4 Deployment and Evaluation
5 Discussion
A Appendix: Interview Protocol
References


On the Current and Emerging Challenges of Developing Fair and Ethical AI Solutions in Financial Services / 2111.01306 / ISBN:https://doi.org/10.48550/arXiv.2111.01306 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 The Need forEthical AI in Finance
3 Practical Challengesof Ethical AI
4 Conclusions & Outlook
References


A primer on AI ethics via arXiv- focus 2020-2023 / Kaggle / on (web) Publishing site
Section 1: Introduction and concept
Section 2: History and prospective
Section 3: Current trends 2020-2023
Section 4: Considerations and conclusions
Appendix A: Bibliographical references
Appendix B: Data and charts from arXiv


What does it mean to be a responsible AI practitioner: An ontology of roles and skills / 2205.03946 / ISBN:https://doi.org/10.48550/arXiv.2205.03946 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background
3 Methodology
4 Proposed competency framework for responsible AI practitioners
5 Discussion
6 Conclusion
Acknowledgments
References
Appendix A supplementary material


GPT detectors are biased against non-native English writers / 2304.02819 / ISBN:https://doi.org/10.48550/arXiv.2304.02819 / Published by ArXiv / on (web) Publishing site
Abstract
Results
Discussion
References
Materials and Methods


Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects / 2304.08275 / ISBN:https://doi.org/10.48550/arXiv.2304.08275 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
II. Underlying Aspects
III. Interactions between Aspects
IV. Concluding Remarks
References


QB4AIRA: A Question Bank for AI Risk Assessment / 2305.09300 / ISBN:https://doi.org/10.48550/arXiv.2305.09300 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 The Question Bank: QB4AIRA
3 Evaluation
4 Conclusion
References


A multilevel framework for AI governance / 2307.03198 / ISBN:https://doi.org/10.48550/arXiv.2307.03198 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introductioon
2. A Multilevel Approach to AI Governance for Trust-Enhancing Practices
3. International and National Governance
4. Corporate Self-Governance
5. AI Literacy and Governance by Citizen
6. Psychology of Trust
7. Propensity to Trust
8. Ethics and Trust Lenses in the Multilevel Framework
9. Virtue Ethics
10. Conclusion
References


From OECD to India: Exploring cross-cultural differences in perceived trust, responsibility and reliance of AI and human experts / 2307.15452 / ISBN:https://doi.org/10.48550/arXiv.2307.15452 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Method
4. Discussion and conclusion
Acknowledgments
References


The Ethics of AI Value Chains: An Approach for Integrating and Expanding AI Ethics Research, Practice, and Governance / 2307.16787 / ISBN:https://doi.org/10.48550/arXiv.2307.16787 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. Theory
3. Methodology
4. Ethical Implications of AI Value Chains
5. Future Directions for Research, Practice, & Policy
6. Conclusion


Perceptions of the Fourth Industrial Revolution and Artificial Intelligence Impact on Society / 2308.02030 / ISBN:https://doi.org/10.48550/arXiv.2308.02030 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Literature Review
Methods
Results
References


Regulating AI manipulation: Applying Insights from behavioral economics and psychology to enhance the practicality of the EU AI Act / 2308.02041 / ISBN:https://doi.org/10.48550/arXiv.2308.02041 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Clarifying Terminologies of Article-5: Insights from Behavioral Economics and Psychology
3 Enhancing Protection for the General Public and Vulnerable Groups
4 Conclusion
References


From Military to Healthcare: Adopting and Expanding Ethical Principles for Generative Artificial Intelligence / 2308.02448 / ISBN:https://doi.org/10.48550/arXiv.2308.02448 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
What is Generative Artificial Intelligence?
Applications in Military Versus Healthcare
Identifying Ethical Concerns and Risks
GREAT PLEA Ethical Principles for Generative AI in Healthcare
Conclusion
Acknowledgements
References


Ethical Considerations and Policy Implications for Large Language Models: Guiding Responsible Development and Deployment / 2308.02678 / ISBN:https://doi.org/10.48550/arXiv.2308.02678 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
System-role
Perturbation
Image-related
Hallucination
Generation-related
Bias and Discrimination of Training Data
Conclusion


Dual Governance: The intersection of centralized regulation and crowdsourced safety mechanisms for Generative AI / 2308.04448 / ISBN:https://doi.org/10.48550/arXiv.2308.04448 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background
3 Policy scope
4 Centralized regulation in the US context
5 Crowdsourced safety mechanism
6 The dual governance framework
7 Limitations
8 Conclusion


Normative Ethics Principles for Responsible AI Systems: Taxonomy and Future Directions / 2208.12616 / ISBN:https://doi.org/10.48550/arXiv.2208.12616 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
3 Taxonomy of ethical principles
4 Previous operationalisation of ethical principles
5 Gaps in operationalising ethical principles
6 Conclusion
References
A Methodology


Bad, mad, and cooked: Moral responsibility for civilian harms in human-AI military teams / 2211.06326 / ISBN:https://doi.org/10.48550/arXiv.2211.06326 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Responsibility in War
Computers, Autonomy and Accountability
Moral Injury
Human Factors
AI Workplace Health and Safety Framework
Conclusion
References


The Future of ChatGPT-enabled Labor Market: A Preliminary Study / 2304.09823 / ISBN:https://doi.org/10.48550/arXiv.2304.09823 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Results
3 Discussion
5 Methods


A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation / 2305.11391 / ISBN:https://doi.org/10.48550/arXiv.2305.11391 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Large Language Models
3 Vulnerabilities, Attack, and Limitations
4 General Verification Framework
5 Falsification and Evaluation
6 Verification
7 Runtime Monitor
8 Regulations and Ethical Use
9 Discussions
10 Conclusions
Acknowledgments
Reference


Getting pwn'd by AI: Penetration Testing with Large Language Models / 2308.00121 / ISBN:https://doi.org/10.48550/arXiv.2308.00121 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background
3 LLM-based penetration testing
4 Discussion
5 A vision of AI-augmented pen-testing
6 Final ethical considerations
References


Artificial Intelligence across Europe: A Study on Awareness, Attitude and Trust / 2308.09979 / ISBN:https://doi.org/10.48550/arXiv.2308.09979 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Results
3 Discussion
4 Conclusions
5 Supplementary material
References


Targeted Data Augmentation for bias mitigation / 2308.11386 / ISBN:https://doi.org/10.48550/arXiv.2308.11386 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related works
3 Targeted data augmentation
4 Experiments
5 Conclusions
References


AIxArtist: A First-Person Tale of Interacting with Artificial Intelligence to Escape Creative Block / 2308.11424 / ISBN:https://doi.org/10.48550/arXiv.2308.11424 / Published by ArXiv / on (web) Publishing site
Introduction
Case study
Reflections
References


Exploring the Power of Creative AI Tools and Game-Based Methodologies for Interactive Web-Based Programming / 2308.11649 / ISBN:https://doi.org/10.48550/arXiv.2308.11649 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Advancements in AI and Web-Based Programming
3 Emergence of Creative AI Tools and Game-Based Methodologies
4 Enhancing User Experience through Creative AI Tools
5 Engaging Web-Based Programming with Game-Based Approaches
6 Unveiling the Potential: Benefits of Interactive Web-Based Programming
7 Navigating Constraints: Limitations of Creative AI and GameBased Techniques
8 Real-World Applications: Showcasing Innovative Implementations
9 Ethical Considerations in Integrating AI and Game Elements
10 Privacy Concerns in Interactive Web-Based Programming for Education
11 Bias Awareness: Navigating AI-Generated Content in Education
12 The Future Landscape: Creative AI Tools and Game-Based Methodologies in Education
13 Case Study Example: Learning Success with Creative AI and Game-Based Techniques
14 Conclusion & Discussion
References


Collect, Measure, Repeat: Reliability Factors for Responsible AI Data Collection / 2308.12885 / ISBN:https://doi.org/10.48550/arXiv.2308.12885 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work on Data Excellence
3 Reliability and Reproducibility Metrics for Responsible Data Collection
4 Published Annotation Tasks and Datasets
5 Results
6 Discussion
7 Conclusions
References
A Agreement Analysis
B Variability Analysis
C Power analysis
D Stability analysis
E Replicability similarity analysis


Building Trust in Conversational AI: A Comprehensive Review and Solution Architecture for Explainable, Privacy-Aware Systems using LLMs and Knowledge Graph / 2308.13534 / ISBN:https://doi.org/10.48550/arXiv.2308.13534 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Methods and training process of LLMs
III. Comprehensive review of state-of-the-art LLMs
IV. Applied and technology implications for LLMs
V. Market analysis of LLMs and cross-industry use cases
VI. Solution architecture for privacy-aware and trustworthy conversational AI
VII. Discussions
VIII. Conclusion
References
Appendix A industry-wide LLM usecases


The Promise and Peril of Artificial Intelligence -- Violet Teaming Offers a Balanced Path Forward / 2308.14253 / ISBN:https://doi.org/10.48550/arXiv.2308.14253 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 The evolution of artificial intelligence: from theory to general capabilities
3 Emerging dual-use risks and vulnerabilities in AI systems
4 Integrating red teaming, blue teaming, and ethics with violet teaming
5 Research directions in AI safety and violet teaming
6 A pathway for balanced AI innovation
7 Violet teaming to address dual-use risks of AI in biotechnology
8 Macrostrategy for responsible technology trajectories
9 The path forward
10 Supplemental & additional details
References


Artificial Intelligence in Career Counseling: A Test Case with ResumAI / 2308.14301 / ISBN:https://doi.org/10.48550/arXiv.2308.14301 / Published by ArXiv / on (web) Publishing site
Abstract
2 Literature review
3 Methods
4 Results and discussion
5 Conclusion
References


Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? / 2308.15399 / ISBN:https://doi.org/10.48550/arXiv.2308.15399 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related works
3 Theory and method
4 Experiment
5 Conclusion
References
Ethical statement
A Details of datasets
B Experimental details


The AI Revolution: Opportunities and Challenges for the Finance Sector / 2308.16538 / ISBN:https://doi.org/10.48550/arXiv.2308.16538 / Published by ArXiv / on (web) Publishing site
Table of contents and index
Executive summary
1 Introduction
2 Key AI technology in financial services
3 Benefits of AI use in the finance sector
4 Threaths & potential pitfalls
5 Challenges
6 Regulation of AI and regulating through AI
7 Recommendations
References


Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond / 2309.00064 / ISBN:https://doi.org/10.48550/arXiv.2309.00064 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Black box and lack of transparency
3 Bias and fairness
4 Human-centric AI
5 Ethical concerns and value alignment
6 Way forward
7 Conclusion
References


The Impact of Artificial Intelligence on the Evolution of Digital Education: A Comparative Study of OpenAI Text Generation Tools including ChatGPT, Bing Chat, Bard, and Ernie / 2309.02029 / ISBN:https://doi.org/10.48550/arXiv.2309.02029 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. Related work
3. ChatGPT Training Process
4. Methods
5. Discussion
6. Conclusion
Funding
References


Pathway to Future Symbiotic Creativity / 2209.02388 / ISBN:https://doi.org/10.48550/arXiv.2209.02388 / Published by ArXiv / on (web) Publishing site
Contents
Introduction
Part 1 - 1 Generatives Systems: Mimicking Artifacts
Part 1 - 2 Appreciate Systems: Mimicking Styles
Part 1 - 3 Artistic Systems: Mimicking Inspiration
Part 2 Art Data and Human–Machine Interaction in Art Creation
Part 2 - 1 Biometric Signal Sensing Technologies and Emotion Data
Part 2 - 2 Motion Caputer Technologies and Motion Data
Part 2 - 3 Photogrammetry / Volumetric Capture
Part 2 - 4 Aesthetic Descriptor: Labelling Artefacts with Emotion
Part 2 - 5 Immersive Visualisation: Machine to Human Manifestations
Part 3 Towards a Machine Artist Model
Part 3 - 2 Machine Artist Models
Part 3 - 3 Comparison with Generative Models
Part 3 - 4 Demonstration of the Proposed Framework
Part 4 NFTs and the Future Art Economy
Part 5 Ethical AI and Machine Artist
Part 5 - 1 Authorship and Ownership of AI-generated Works of Artt
Part 5 - 2 Algorithmics Bias in Art Generation
Part 5 - 3 Democratization of Art with new Technologies
References
Acknowledgment


FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging / 2109.09658 / ISBN:https://doi.org/10.48550/arXiv.2109.09658 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. Fairness - For Equitable AI in Medical Imaging
3. Universality - For Standardised AI in Medical Imaging
4. Traceability - For Transparent and Dynamic AI in Medical Imaging
5. Usability - For Effective and Beneficial AI in Medical Imaging
6. Robustness - For Reliable AI in Medical Imaging
7. Explainability - For Enhanced Understanding of AI in Medical Imaging
8. FUTURE-AI Quality Check
9. Discussion and Conclusion
Acknowledgments
References


The Cambridge Law Corpus: A Corpus for Legal AI Research / 2309.12269 / ISBN:https://doi.org/10.48550/arXiv.2309.12269 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 The Cambridge Law Corpus
3 Legal and Ethical Considerations
4 Experiments
5 Conclusion
Acknowledgements
General References
Legal References
A Detailed Information on Corpus Content
C Case Outcome Task Description
D Case Outcome Annotation Instructions
E Topic Model Top Words
F Evaluation of GPT Models
Cambridge Law Corpus: Datasheet


EALM: Introducing Multidimensional Ethical Alignment in Conversational Information Retrieval / 2310.00970 / ISBN:https://doi.org/10.48550/arXiv.2310.00970 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Dataset Construction
4 Modeling Ethics
5 Experiments
6 Conclusions
Appendix
References


Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities / 2310.08565 / ISBN:https://doi.org/10.48550/arXiv.2310.08565 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction and Motivation
II. AI-Robotics Systems Architecture
III. Survey Approach & Taxonomy
IV. Attack Surfaces
V. Ethical & Legal Concerns
VI. Human-Robot Interaction (HRI) Security Studies
VII. Future Research & Discussion
VIII. Conclusion
Acknowledgements
References


If our aim is to build morality into an artificial agent, how might we begin to go about doing so? / 2310.08295 / ISBN:https://doi.org/10.48550/arXiv.2310.08295 / Published by ArXiv / on (web) Publishing site
Abstract
1 The Top-Down Approach Alone Might Be Insufficient
2 Emotion, Sentience and Morality
3 Proposing a Hybrid Approach
4 AI Governance Principles
5 Towards Moral AI
References


Deepfakes, Phrenology, Surveillance, and More! A Taxonomy of AI Privacy Risks / 2310.07879 / ISBN:https://doi.org/10.48550/arXiv.2310.07879 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background and Related Work
3 Method
4 Taxonomy of AI Privacy Risks
5 Discussion
6 Conclusion
References


ClausewitzGPT Framework A New Frontier in Theoretical Large Language Model Enhanced Information Operations / 2310.07099 / ISBN:https://doi.org/10.48550/arXiv.2310.07099 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Nation-State Advances in AI-driven Information Operations
Theoretical Impact of LLMs on Information Operations
ClausewitzGPT and Modern Strategy
Mathematical Foundations
Ethical and Strategic Considerations: AI Mediators in the Age of LLMs
Looking Forward: ClausewitzGPT
Conclusion
References


The AI Incident Database as an Educational Tool to Raise Awareness of AI Harms: A Classroom Exploration of Efficacy, Limitations, & Future Improvements / 2310.06269 / ISBN:https://doi.org/10.48550/arXiv.2310.06269 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Research Design and Methodology
3 Analysis and Findings
4 Discussion
5 Conclusion
References
A Consent and Data Collection Processes
B Pre-class Questionnaire (Verbatim)
D Post-Activity Questionnaire (Verbatim)
G Statistical Tests


A Review of the Ethics of Artificial Intelligence and its Applications in the United States / 2310.05751 / ISBN:https://doi.org/10.48550/arXiv.2310.05751 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. Literature Review
3. AI Ethical Principles
4. Implementing the Practical Use of Ethical AI Applications
5. Conclusions and Recommendations
References
Authors


A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics / 2310.05694 / ISBN:https://doi.org/10.48550/arXiv.2310.05694 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
II. WHAT LLMS CAN DO FOR HEALTHCARE? FROM FUNDAMENTAL TASKS TO ADVANCED APPLICATIONS
III. FROM PLMS TO LLMS FOR HEALTHCARE
IV. TRAIN AND USE LLM FOR HEALTHCARE
V. EVALUATION METHOD
VI. IMPROVING FAIRNESS, ACCOUNTABILITY, TRANSPARENCY, AND ETHICS
VII. FUTURE WORK AND CONCLUSION
Acknowledgments
References


STREAM: Social data and knowledge collective intelligence platform for TRaining Ethical AI Models / 2310.05563 / ISBN:https://doi.org/10.48550/arXiv.2310.05563 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 STREAM: Social data and knowledge collective intelligence platform for TRaining Ethical AI Models
3 The applications of STREAM
4 Conclusion and Future Work
References
Author contributions statement


Regulation and NLP (RegNLP): Taming Large Language Models / 2310.05553 / ISBN:https://doi.org/10.48550/arXiv.2310.05553 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Regulation: A Short Introduction
3 LLMs: Risk and Uncertainty
4 Scientific Expertise, Social Media and Regulatory Capture
5 Regulation and NLP (RegNLP): A New Field
6 Conclusion
Limitations
References


Ethics of Artificial Intelligence and Robotics in the Architecture, Engineering, and Construction Industry / 2310.05414 / ISBN:https://doi.org/10.48550/arXiv.2310.05414 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. Research Methodology
3. Ethics of AI and Robotics
4. Systematic Review and Scientometric Analysis
5. Ethical Issues of AI and Robotics in AEC Industry
6. Discussion
7. Future Research Direction
References


Commercialized Generative AI: A Critical Study of the Feasibility and Ethics of Generating Native Advertising Using Large Language Models in Conversational Web Search / 2310.04892 / ISBN:https://doi.org/10.48550/arXiv.2310.04892 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Background and Related Work
Pilot Study: Text SERPs with Ads
Evaluation of the Pilot Study
Ethics of GEnerating Native Ads
Conclusion
References


Compromise in Multilateral Negotiations and the Global Regulation of Artificial Intelligence / 2309.17158 / ISBN:https://doi.org/10.48550/arXiv.2309.17158 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. The practice of multilateral negotiation and the mechanisms of compromises
3. The liberal-sovereigntist multiplicity
4. Towards a compromise: drafting the normative hybridity
5. Text negotiations as normative testing
6. Conclusion
Notes
Bibliography
Annex 1. Text amendments and ambiguity


Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial Intelligence / 2309.14617 / ISBN:https://doi.org/10.48550/arXiv.2309.14617 / Published by ArXiv / on (web) Publishing site
Introduction
Why Ethics
Utilitarian Ethics
Principal Ethics in Healthcare
Method
Results and Discussion
Theory and Practical Implications
References


Risk of AI in Healthcare: A Comprehensive Literature Review and Study Framework / 2309.14530 / ISBN:https://doi.org/10.48550/arXiv.2309.14530 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
3. Clinical Risks
4. Technical Risks
5. Conclusion
References
Appendix


Autonomous Vehicles an overview on system, cyber security, risks, issues, and a way forward / 2309.14213 / ISBN:https://doi.org/10.48550/arXiv.2309.14213 / Published by ArXiv / on (web) Publishing site
Table of Contents
1. Introduction
2. Autonomous vehicles
4. Traffic Flow prediction in Autonomous vehicles
5. Cybersecurity Risks
6. Risk management
7. Issues
8. Conclusion
9. References


The Return on Investment in AI Ethics: A Holistic Framework / 2309.13057 / ISBN:https://doi.org/10.48550/arXiv.2309.13057 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. AI Ethics
3. Return on Investment (ROI)
4. A Holistic Framework
5. Discussion
6. References


An Evaluation of GPT-4 on the ETHICS Dataset / 2309.10492 / ISBN:https://doi.org/10.48550/arXiv.2309.10492 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Datasets and Methods
3 Results
4 Discussion
References
A GPT-4’s Training Set Personality Profile


Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust / 2309.10318 / ISBN:https://doi.org/10.48550/arXiv.2309.10318 / Published by ArXiv / on (web) Publishing site
Introduction
Trust in AI
Different Types of Trust
Trust and AI Ethics Principles
Trust in AI as Socio-Technical Systems
Conclusion
Acknowledgements
References


In Consideration of Indigenous Data Sovereignty: Data Mining as a Colonial Practice / 2309.10215 / ISBN:https://doi.org/10.48550/arXiv.2309.10215 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Definitions of Terms
3 Objectives
4 Methodology
5 Relating Case Studies to Indigenous Data Sovereignty and CARE Principles
6 Discussion
7 Conclusions and Recommendations
References


The Glamorisation of Unpaid Labour: AI and its Influencers / 2308.02399 / ISBN:https://doi.org/10.48550/arXiv.2308.02399 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Harms of Influencer Marketing
3 Ethical Data Collection, Responsible AI Development, and the Path Forward
4 Conclusion
References


AI & Blockchain as sustainable teaching and learning tools to cope with the 4IR / 2305.01088 / ISBN:https://doi.org/10.48550/arXiv.2305.01088 / Published by ArXiv / on (web) Publishing site
Authors
1. Introduction
2. AI and blockchain in education: An overview of the benefits and challenges
3. AI-powered personalized learning: Customized learning experiences for learners
4. Blockchain-based credentialing and certification
5. AI-powered assessment and evaluation
6. Blockchain-based decentralized learning networks
7. AI-powered content creation and curation
8. Case studies: AI and blockchain in education
9. Challenges of AI and Blockchain in Teaching and Learning
10.Conclusion
11.References


Toward an Ethics of AI Belief / 2304.14577 / ISBN:https://doi.org/10.48550/arXiv.2304.14577 / Published by ArXiv / on (web) Publishing site
2. “Belief” in Humans and AI
3. Why We Need an Ethics of AI Belief
4. Proposed Novel Topics in an Ethics of AI Belief
5. Nascent Extant Work that Falls Within the Ethics of AI Belief
References


Ensuring Trustworthy Medical Artificial Intelligence through Ethical and Philosophical Principles / 2304.11530 / ISBN:https://doi.org/10.48550/arXiv.2304.11530 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Ethical concerns of AI in medicine
Ethical datasets and algorithm development guidelines
Towards solving key ethical challenges in Medical AI
Ethical guidelines for medical AI model deployment
Discussion
Conclusion and future directions
References


Responsible AI Pattern Catalogue: A Collection of Best Practices for AI Governance and Engineering / 2209.04963 / ISBN:https://doi.org/10.48550/arXiv.2209.04963 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Methodology
3 Governance Patterns
4 Process Patterns
5 Product Patterns
6 Related Work
7 Threats to Validity
8 Conclusion
References


The Ethics of AI Value Chains: An Approach for Integrating and Expanding AI Ethics Research, Practice, and Governance / 2307.16787 / ISBN:https://doi.org/10.48550/arXiv.2307.16787 / Published by ArXiv / on (web) Publishing site
Bibliography
Appendix A: Integrated Inventory of Ethical Concerns, Value Chains Actors, Resourcing Activities, & Sampled Sources


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare / 2309.12325 / ISBN:https://doi.org/10.48550/arXiv.2309.12325 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Materials and Methods
3 FUTURE-AI Guideline
4 Discussion
References
Appendix A Tables
Appendix B Full Author Affiliations


Language Agents for Detecting Implicit Stereotypes in Text-to-Image Models at Scale / 2310.11778 / ISBN:https://doi.org/10.48550/arXiv.2310.11778 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Agent Design
3 Agent Benchmark
4 Agent Performance
5 Related Work
6 Conclusion and Future Work
References
Appendix A Data Details
Appendix B Experiment Details


Specific versus General Principles for Constitutional AI / 2310.13798 / ISBN:https://doi.org/10.48550/arXiv.2310.13798 / Published by ArXiv / on (web) Publishing site
Abstract
Contents
1 Introduction
2 AI feedback on specific problematic AI traits
4 Reinforcement Learning with Good-for-Humanity Preference Models
5 Related Work
6 Discussion
7 Contribution Statement
Acknowledgments
References
B Trait Preference Modeling
D Generalization to Other Traits
E Response Diversity and the Size of the Generating Model
F Scaling Trends for GfH PMs
G Over-Training on Good for Humanity
H Samples
I Responses on Prompts from PALMS, LaMDA, and InstructGPT


The Self 2.0: How AI-Enhanced Self-Clones Transform Self-Perception and Improve Presentation Skills / 2310.15112 / ISBN:https://doi.org/10.48550/arXiv.2310.15112 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Method
4 Findings
5 Discussion
6 Conclusion
7 Limitation and Future Research
References
Annexed tables


Systematic AI Approach for AGI: Addressing Alignment, Energy, and AGI Grand Challenges / 2310.15274 / ISBN:https://doi.org/10.48550/arXiv.2310.15274 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Trifecta of AI Challenges
3 Systematic AI Approach for AGI
4 Systematic AI for Energy Wall
5 System Design for AI Alignment
6 System Insights from the Brain
7 Conclusions
References


AI Alignment and Social Choice: Fundamental Limitations and Policy Implications / 2310.16048 / ISBN:https://doi.org/10.48550/arXiv.2310.16048 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Reinforcement Learning with Multiple Reinforcers
3 Arrow-Sen Impossibility Theorems for RLHF
4 Implications for AI Governance and Policy
5 Conclusion
References


A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends, Vision , and Challenges / 2310.16360 / ISBN:https://doi.org/10.48550/arXiv.2310.16360 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
II. Review Methodology
IV. Artificial Intelligence Embedded UAV
V. Challenges and Future Aspect on AI Enabled UAV
VI. Review Summary
VII. Conclusion
References
Authors Bios


Unpacking the Ethical Value Alignment in Big Models / 2310.17551 / ISBN:https://doi.org/10.48550/arXiv.2310.17551 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Risks and Ethical Issues of Big Model
3 Investigating the Ethical Values of Large Language Models
4 Equilibrium Alignment: A Prospective Paradigm for Ethical Value Alignmen
5 Conclusion
References


Moral Responsibility for AI Systems / 2310.18040 / ISBN:https://doi.org/10.48550/arXiv.2310.18040 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Causal Models
3 The BvH and HK Definitions
4 The Causal Condition
6 Degree of Responsibility
7 Conclusion and Future Work
Acknowledgments and Disclosure of Funding
References


AI for Open Science: A Multi-Agent Perspective for Ethically Translating Data to Knowledge / 2310.18852 / ISBN:https://doi.org/10.48550/arXiv.2310.18852 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background and Related Work
3 A Formal Language of AI for Open Science
4 Optimizing an Openness Metric in AI for Science
5 Why Openness in AI for Science
6 Conclusion and Future Work
Acknowledgements
References


Artificial Intelligence Ethics Education in Cybersecurity: Challenges and Opportunities: a focus group report / 2311.00903 / ISBN:https://doi.org/10.48550/arXiv.2311.00903 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
AI Ethics in Cybersecurity
Focus Group Protocol and Recruitment
Educational Challenges of Teaching AI Ethics in Cybersecurity and Core Ethical Principles
Pedagogical / Curricular Concerns Now and in the Future
Technical Issues
Learning Challenges
AI tool-specific educational concerns
Communication skills in cybersecurity and ethics
Conclusion
References


Human Participants in AI Research: Ethics and Transparency in Practice / 2311.01254 / ISBN:https://doi.org/10.48550/arXiv.2311.01254 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Contextual Concerns: Why AI Research Needs its Own Guidelines
3 Ethical Principles for AI Research with Human Participants
4 Principles in Practice: Guidelines for AI Research with Human Participants
5 Discussion
Acknowledgments
References
A Evaluating Current Practices for Human-Participants Research
B Placing Research Ethics for Human Participants in Historical Context
C Defining the Scope of Research Participation in AI Research


LLMs grasp morality in concept / 2311.02294 / ISBN:https://doi.org/10.48550/arXiv.2311.02294 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 A General Theory of Meaning
4 The Moral Model
5 Conclusion
A Supplementary Material
References


Educating for AI Cybersecurity Work and Research: Ethics, Systems Thinking, and Communication Requirements / 2311.04326 / ISBN:https://doi.org/10.48550/arXiv.2311.04326 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Literature Review
Research questions
Conclusions
References


Towards Effective Paraphrasing for Information Disguise / 2311.05018 / ISBN:https://doi.org/10.1007/978-3-031-28238-6_22 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Methodology
4 Evaluation
References


Kantian Deontology Meets AI Alignment: Towards Morally Robust Fairness Metrics / 2311.05227 / ISBN:https://doi.org/10.48550/arXiv.2311.05227 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Overview of Kantian Deontology
3 Measuring Fairness Metrics
4 Deontological AI Alignment
5 Conclusion
References