RobertoLofaro.com - Knowledge Portal - human-generated content
Change, with and without technology
for updates on publications, follow @robertolofaro on Instagram or @changerulebook on Twitter, you can also support on Patreon or subscribe on YouTube


You are now here: AI Ethics Primer - search within the bibliography - version 0.4 of 2023-12-13 > (tag cloud) >tag_selected: labelling

Currently searching for:

if you need more than one keyword, modify and separate by underscore _
the list of search keywords can be up to 50 characters long

if you modify the keywords, press enter within the field to confirm the new search key

Tag: labelling

Bibliography items where occurs: 15
On the Current and Emerging Challenges of Developing Fair and Ethical AI Solutions in Financial Services / 2111.01306 / ISBN:https://doi.org/10.48550/arXiv.2111.01306 / Published by ArXiv / on (web) Publishing site
3 Practical Challengesof Ethical AI

Collect, Measure, Repeat: Reliability Factors for Responsible AI Data Collection / 2308.12885 / ISBN:https://doi.org/10.48550/arXiv.2308.12885 / Published by ArXiv / on (web) Publishing site

Pathway to Future Symbiotic Creativity / 2209.02388 / ISBN:https://doi.org/10.48550/arXiv.2209.02388 / Published by ArXiv / on (web) Publishing site
Part 2 - 1 Biometric Signal Sensing Technologies and Emotion Data
Part 3 - 1 Challenges in Endowing Machines with Creative Abilities

FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging / 2109.09658 / ISBN:https://doi.org/10.48550/arXiv.2109.09658 / Published by ArXiv / on (web) Publishing site
2. Fairness - For Equitable AI in Medical Imaging
3. Universality - For Standardised AI in Medical Imaging
4. Traceability - For Transparent and Dynamic AI in Medical Imaging
8. FUTURE-AI Quality Check

Risk of AI in Healthcare: A Comprehensive Literature Review and Study Framework / 2309.14530 / ISBN:https://doi.org/10.48550/arXiv.2309.14530 / Published by ArXiv / on (web) Publishing site
4. Technical Risks

The Glamorisation of Unpaid Labour: AI and its Influencers / 2308.02399 / ISBN:https://doi.org/10.48550/arXiv.2308.02399 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Ethical Data Collection, Responsible AI Development, and the Path Forward
4 Conclusion

Towards Auditing Large Language Models: Improving Text-based Stereotype Detection / 2311.14126 / ISBN:https://doi.org/10.48550/arXiv.2311.14126 / Published by ArXiv / on (web) Publishing site
3 Methodology

Control Risk for Potential Misuse of Artificial Intelligence in Science / 2312.06632 / ISBN:https://doi.org/10.48550/arXiv.2312.06632 / Published by ArXiv / on (web) Publishing site
3 Control the Risks of AI Models in Science
Appendix B Details of Risks Demonstration in Chemical Science

Navigating the generative AI era: Introducing the AI assessment scale for ethical GenAI assessment / 2312.07086 / ISBN:https://doi.org/10.48550/arXiv.2312.07086 / Published by ArXiv / on (web) Publishing site
Problematizing The View Of GenAI Content As Academic Misconduct

The Economics of Human Oversight: How Norms and Incentives Affect Costs and Performance of AI Workers / 2312.14565 / ISBN:https://doi.org/10.48550/arXiv.2312.14565 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Theoretical background and hypotheses
IV. Results
V. Discussion

Towards Responsible AI in Banking: Addressing Bias for Fair Decision-Making / 2401.08691 / ISBN:https://doi.org/10.48550/arXiv.2401.08691 / Published by ArXiv / on (web) Publishing site
II Mitigating bias - 5 Fairness mitigation

(A)I Am Not a Lawyer, But...: Engaging Legal Experts towards Responsible LLM Policies for Legal Advice / 2402.01864 / ISBN:https://doi.org/10.48550/arXiv.2402.01864 / Published by ArXiv / on (web) Publishing site

Ethics in AI through the Practitioner's View: A Grounded Theory Literature Review / 2206.09514 / ISBN:https://doi.org/10.48550/arXiv.2206.09514 / Published by ArXiv / on (web) Publishing site
6 Discussion and Recommendations

The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review / 2402.13635 / ISBN:https://doi.org/10.48550/arXiv.2402.13635 / Published by ArXiv / on (web) Publishing site
METRIC-framework for medical training data

Multi-stakeholder Perspective on Responsible Artificial Intelligence and Acceptability in Education / 2402.15027 / ISBN:https://doi.org/10.48550/arXiv.2402.15027 / Published by ArXiv / on (web) Publishing site
6 Discussion