_
RobertoLofaro.com - Knowledge Portal
Change, with and without technology
for updates on publications, follow @changerulebook on either Instagram or Twitter - you can also support on Patreon or subscribe on YouTube


_

You are now here: AI Ethics Primer - search within the bibliography - version 0.3 of 2023-08-13 > (tag cloud) >tag_selected: clinicians


Tag: clinicians

Bibliography items where occurs: 10
if you need more than one keyword, add on the URL each keyword prefixed by _ (underscore)- total up to 50 characters
From Military to Healthcare: Adopting and Expanding Ethical Principles for Generative Artificial Intelligence / 2308.02448 / ISBN:https://doi.org/10.48550/arXiv.2308.02448 / Published by ArXiv / on (web) Publishing site
Applications in Military Versus Healthcare
Identifying Ethical Concerns and Risks
GREAT PLEA Ethical Principles for Generative AI in Healthcare
References


The AI Revolution: Opportunities and Challenges for the Finance Sector / 2308.16538 / ISBN:https://doi.org/10.48550/arXiv.2308.16538 / Published by ArXiv / on (web) Publishing site
6 Regulation of AI and regulating through AI


Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond / 2309.00064 / ISBN:https://doi.org/10.48550/arXiv.2309.00064 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Black box and lack of transparency
3 Bias and fairness


FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging / 2109.09658 / ISBN:https://doi.org/10.48550/arXiv.2109.09658 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Fairness - For Equitable AI in Medical Imaging
3. Universality - For Standardised AI in Medical Imaging
4. Traceability - For Transparent and Dynamic AI in Medical Imaging
5. Usability - For Effective and Beneficial AI in Medical Imaging
6. Robustness - For Reliable AI in Medical Imaging
7. Explainability - For Enhanced Understanding of AI in Medical Imaging
8. FUTURE-AI Quality Check
9. Discussion and Conclusion
References


A Review of the Ethics of Artificial Intelligence and its Applications in the United States / 2310.05751 / ISBN:https://doi.org/10.48550/arXiv.2310.05751 / Published by ArXiv / on (web) Publishing site
2. Literature Review


A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics / 2310.05694 / ISBN:https://doi.org/10.48550/arXiv.2310.05694 / Published by ArXiv / on (web) Publishing site
II. WHAT LLMS CAN DO FOR HEALTHCARE? FROM FUNDAMENTAL TASKS TO ADVANCED APPLICATIONS
III. FROM PLMS TO LLMS FOR HEALTHCARE
VI. IMPROVING FAIRNESS, ACCOUNTABILITY, TRANSPARENCY, AND ETHICS


Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial Intelligence / 2309.14617 / ISBN:https://doi.org/10.48550/arXiv.2309.14617 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Utilitarian Ethics
Conclusion


Risk of AI in Healthcare: A Comprehensive Literature Review and Study Framework / 2309.14530 / ISBN:https://doi.org/10.48550/arXiv.2309.14530 / Published by ArXiv / on (web) Publishing site
3. Clinical Risks
4. Technical Risks
References


Ensuring Trustworthy Medical Artificial Intelligence through Ethical and Philosophical Principles / 2304.11530 / ISBN:https://doi.org/10.48550/arXiv.2304.11530 / Published by ArXiv / on (web) Publishing site
Introduction
Ethical concerns of AI in medicine
Towards solving key ethical challenges in Medical AI
Ethical guidelines for medical AI model deployment


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare / 2309.12325 / ISBN:https://doi.org/10.48550/arXiv.2309.12325 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Materials and Methods
3 FUTURE-AI Guideline
Appendix A Tables