_
RobertoLofaro.com - Knowledge Portal - human-generated content
Change, with and without technology
for updates on publications, follow @robertolofaro on Instagram or @changerulebook on Twitter, you can also support on Patreon or subscribe on YouTube


_

You are now here: AI Ethics Primer - search within the bibliography - version 0.4 of 2023-12-13 > (tag cloud) >tag_selected: calibration


Currently searching for:

if you need more than one keyword, modify and separate by underscore _
the list of search keywords can be up to 50 characters long


if you modify the keywords, press enter within the field to confirm the new search key

Tag: calibration

Bibliography items where occurs: 43
The AI Index 2022 Annual Report / 2205.03468 / ISBN:https://doi.org/10.48550/arXiv.2205.03468 / Published by ArXiv / on (web) Publishing site
Appendix


On the Current and Emerging Challenges of Developing Fair and Ethical AI Solutions in Financial Services / 2111.01306 / ISBN:https://doi.org/10.48550/arXiv.2111.01306 / Published by ArXiv / on (web) Publishing site
3 Practical Challengesof Ethical AI


Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects / 2304.08275 / ISBN:https://doi.org/10.48550/arXiv.2304.08275 / Published by ArXiv / on (web) Publishing site
III. Interactions between Aspects


Bad, mad, and cooked: Moral responsibility for civilian harms in human-AI military teams / 2211.06326 / ISBN:https://doi.org/10.48550/arXiv.2211.06326 / Published by ArXiv / on (web) Publishing site
Computers, Autonomy and Accountability


A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation / 2305.11391 / ISBN:https://doi.org/10.48550/arXiv.2305.11391 / Published by ArXiv / on (web) Publishing site
7 Runtime Monitor
Reference


Exploring the Power of Creative AI Tools and Game-Based Methodologies for Interactive Web-Based Programming / 2308.11649 / ISBN:https://doi.org/10.48550/arXiv.2308.11649 / Published by ArXiv / on (web) Publishing site
12 The Future Landscape: Creative AI Tools and Game-Based Methodologies in Education


FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging / 2109.09658 / ISBN:https://doi.org/10.48550/arXiv.2109.09658 / Published by ArXiv / on (web) Publishing site
6. Robustness - For Reliable AI in Medical Imaging


ClausewitzGPT Framework: A New Frontier in Theoretical Large Language Model Enhanced Information Operations / 2310.07099 / ISBN:https://doi.org/10.48550/arXiv.2310.07099 / Published by ArXiv / on (web) Publishing site
Mathematical Foundations


Autonomous Vehicles an overview on system, cyber security, risks, issues, and a way forward / 2309.14213 / ISBN:https://doi.org/10.48550/arXiv.2309.14213 / Published by ArXiv / on (web) Publishing site
2. Autonomous vehicles


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare / 2309.12325 / ISBN:https://doi.org/10.48550/arXiv.2309.12325 / Published by ArXiv / on (web) Publishing site
FUTURE-AI GUIDELINE


Systematic AI Approach for AGI: Addressing Alignment, Energy, and AGI Grand Challenges / 2310.15274 / ISBN:https://doi.org/10.48550/arXiv.2310.15274 / Published by ArXiv / on (web) Publishing site
1 Introduction


Prudent Silence or Foolish Babble? Examining Large Language Models' Responses to the Unknown / 2311.09731 / ISBN:https://doi.org/10.48550/arXiv.2311.09731 / Published by ArXiv / on (web) Publishing site
3 Experiments
4 Related Work
References
D Additional Results and Figures


Towards Auditing Large Language Models: Improving Text-based Stereotype Detection / 2311.14126 / ISBN:https://doi.org/10.48550/arXiv.2311.14126 / Published by ArXiv / on (web) Publishing site
4 Results and Discussion


RAISE -- Radiology AI Safety, an End-to-end lifecycle approach / 2311.14570 / ISBN:https://doi.org/10.48550/arXiv.2311.14570 / Published by ArXiv / on (web) Publishing site
2. Pre-Deployment phase
4. Post-market surveillance phase


AI Ethics Principles in Practice: Perspectives of Designers and Developers / 2112.07467 / ISBN:https://doi.org/10.48550/arXiv.2112.07467 / Published by ArXiv / on (web) Publishing site
IV. Results
V. Discussion and suggestions


Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models / 2310.19917 / ISBN:https://doi.org/10.48550/arXiv.2310.19917 / Published by ArXiv / on (web) Publishing site
Results
Discussion


Towards Responsible AI in Banking: Addressing Bias for Fair Decision-Making / 2401.08691 / ISBN:https://doi.org/10.48550/arXiv.2401.08691 / Published by ArXiv / on (web) Publishing site
4 Fairness metrics landscape in machine learning
II Mitigating bias - 5 Fairness mitigation


I Think, Therefore I am: Benchmarking Awareness of Large Language Models Using AwareBench / 2401.17882 / ISBN:https://doi.org/10.48550/arXiv.2401.17882 / Published by ArXiv / on (web) Publishing site
Limitation


Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence / 2402.09880 / ISBN:https://doi.org/10.48550/arXiv.2402.09880 / Published by ArXiv / on (web) Publishing site
II. Background and Related Work


Multi-stakeholder Perspective on Responsible Artificial Intelligence and Acceptability in Education / 2402.15027 / ISBN:https://doi.org/10.48550/arXiv.2402.15027 / Published by ArXiv / on (web) Publishing site
2 Background


Trust in AI: Progress, Challenges, and Future Directions / 2403.14680 / ISBN:https://doi.org/10.48550/arXiv.2403.14680 / Published by ArXiv / on (web) Publishing site
3. Findings
Reference


Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation / 2403.14706 / ISBN:https://doi.org/10.48550/arXiv.2403.14706 / Published by ArXiv / on (web) Publishing site
Methodology
Results


The Pursuit of Fairness in Artificial Intelligence Models A Survey / 2403.17333 / ISBN:https://doi.org/10.48550/arXiv.2403.17333 / Published by ArXiv / on (web) Publishing site
3 Conceptualizing Fairness and Bias in ML
5 Ways to mitigate bias and promote Fairness
8 Conclusion
References


A Critical Survey on Fairness Benefits of Explainable AI / 2310.13007 / ISBN:https://doi.org/10.1145/3630106.3658990 / Published by ArXiv / on (web) Publishing site
References


Just Like Me: The Role of Opinions and Personal Experiences in The Perception of Explanations in Subjective Decision-Making / 2404.12558 / ISBN:https://doi.org/10.48550/arXiv.2404.12558 / Published by ArXiv / on (web) Publishing site
References


From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap / 2404.13131 / ISBN:https://doi.org/10.1145/3630106.3658951 / Published by ArXiv / on (web) Publishing site
References


Fairness in AI: challenges in bridging the gap between algorithms and law / 2404.19371 / ISBN:https://doi.org/10.48550/arXiv.2404.19371 / Published by ArXiv / on (web) Publishing site
V. Discussion


A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law / 2405.01769 / ISBN:https://doi.org/10.48550/arXiv.2405.01769 / Published by ArXiv / on (web) Publishing site
6 Ethics


Redefining Qualitative Analysis in the AI Era: Utilizing ChatGPT for Efficient Thematic Analysis / 2309.10771 / ISBN:https://doi.org/10.48550/arXiv.2309.10771 / on (web) Publishing site
2 Related Work


A scoping review of using Large Language Models (LLMs) to investigate Electronic Health Records (EHRs) / 2405.03066 / ISBN:https://doi.org/10.48550/arXiv.2405.03066 / Published by ArXiv / on (web) Publishing site
References


Integrating Emotional and Linguistic Models for Ethical Compliance in Large Language Models / 2405.07076 / ISBN:https://doi.org/10.48550/arXiv.2405.07076 / Published by ArXiv / on (web) Publishing site
2 Related Work
References


Pragmatic auditing: a pilot-driven approach for auditing Machine Learning systems / 2405.13191 / ISBN:https://doi.org/10.48550/arXiv.2405.13191 / Published by ArXiv / on (web) Publishing site
4 Conducting the Pilots
D Lifecycle Mapping of Pilot 1


Towards Clinical AI Fairness: Filling Gaps in the Puzzle / 2405.17921 / ISBN:https://doi.org/10.48550/arXiv.2405.17921 / Published by ArXiv / on (web) Publishing site
Methods in clinical AI fairness research
Additional material


How Ethical Should AI Be? How AI Alignment Shapes the Risk Preferences of LLMs / 2406.01168 / ISBN:https://doi.org/10.48550/arXiv.2406.01168 / Published by ArXiv / on (web) Publishing site
II. Risk Characteristics of LLMs
V. Robustness: Transcript Readability and Investment Score Predictability


Evaluating AI fairness in credit scoring with the BRIO tool / 2406.03292 / ISBN:https://doi.org/10.48550/arXiv.2406.03292 / Published by ArXiv / on (web) Publishing site
3 ML model construction


Fair by design: A sociotechnical approach to justifying the fairness of AI-enabled systems across the lifecycle / 2406.09029 / ISBN:https://doi.org/10.48550/arXiv.2406.09029 / Published by ArXiv / on (web) Publishing site
2 Fairness and AI


AI Alignment through Reinforcement Learning from Human Feedback? Contradictions and Limitations / 2406.18346 / ISBN:https://doi.org/10.48550/arXiv.2406.18346 / Published by ArXiv / on (web) Publishing site
References


Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models / 2310.19917 / ISBN:https://doi.org/10.48550/arXiv.2310.19917 / Published by ArXiv / on (web) Publishing site
References


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare / 2309.12325 / ISBN:https://doi.org/10.48550/arXiv.2309.12325 / Published by ArXiv / on (web) Publishing site
REFERENCES:


Thorns and Algorithms: Navigating Generative AI Challenges Inspired by Giraffes and Acacias / 2407.11360 / ISBN:https://doi.org/10.48550/arXiv.2407.11360 / Published by ArXiv / on (web) Publishing site
4 Generative AI and Humans: Risks and Mitigation


Mapping the individual, social, and biospheric impacts of Foundation Models / 2407.17129 / ISBN:https://doi.org/10.48550/arXiv.2407.17129 / Published by ArXiv / on (web) Publishing site
References


Don't Kill the Baby: The Case for AI in Arbitration / 2408.11608 / ISBN:https://doi.org/10.48550/arXiv.2408.11608 / Published by ArXiv / on (web) Publishing site
2. Designating AI as an Arbitrator is Consistent with FAA


The Problems with Proxies: Making Data Work Visible through Requester Practices / 2408.11667 / ISBN:https://doi.org/10.48550/arXiv.2408.11667 / Published by ArXiv / on (web) Publishing site
Methods


Aligning XAI with EU Regulations for Smart Biomedical Devices: A Methodology for Compliance Analysis / 2408.15121 / ISBN:https://doi.org/10.48550/arXiv.2408.15121 / Published by ArXiv / on (web) Publishing site
5 Explanation Requirements and Legal Explanatory Goals


Digital Homunculi: Reimagining Democracy Research with Generative Agents / 2409.00826 / ISBN:https://doi.org/10.48550/arXiv.2409.00826 / Published by ArXiv / on (web) Publishing site
5. Annoyances or Dealbreakers?