_
RobertoLofaro.com - Knowledge Portal - human-generated content
Change, with and without technology
for updates on publications, follow @robertolofaro on Instagram or @changerulebook on Twitter, you can also support on Patreon or subscribe on YouTube


_

You are now here: AI Ethics Primer - search within the bibliography - version 0.4 of 2023-12-13 > (tag cloud) >tag_selected: formation


Currently searching for:

if you need more than one keyword, modify and separate by underscore _
the list of search keywords can be up to 50 characters long


if you modify the keywords, press enter within the field to confirm the new search key

Tag: formation

Bibliography items where occurs: 325
The AI Index 2022 Annual Report / 2205.03468 / ISBN:https://doi.org/10.48550/arXiv.2205.03468 / Published by ArXiv / on (web) Publishing site
Chapter 1 Reseach and Development
Chapter 2 Technical Performance
Chapter 3 Technical AI Ethics
Chapter 4 The Economy and Education
Chapter 5 AI Policy and Governance
Appendix


Exciting, Useful, Worrying, Futuristic: Public Perception of Artificial Intelligence in 8 Countries / 2001.00081 / ISBN:https://doi.org/10.48550/arXiv.2001.00081 / Published by ArXiv / on (web) Publishing site
2 Background
4 Findings
5 Discussion
References


Ethics of AI: A Systematic Literature Review of Principles and Challenges / 2109.07906 / ISBN:https://doi.org/10.48550/arXiv.2109.07906 / Published by ArXiv / on (web) Publishing site
2 Background
3 Research Method
5 Detail results and analysis
References
9 Appendices


AI Ethics Issues in Real World: Evidence from AI Incident Database / 2206.07635 / ISBN:https://doi.org/10.48550/arXiv.2206.07635 / Published by ArXiv / on (web) Publishing site
3 Method
4 Results
References


The Different Faces of AI Ethics Across the World: A Principle-Implementation Gap Analysis / 2206.03225 / ISBN:https://doi.org/10.48550/arXiv.2206.03225 / Published by ArXiv / on (web) Publishing site
3 Study Methodology
5 Evaluation of Ethical Principle Implementations
7 Threats to Validiity
Acknowledgment
References


A Framework for Ethical AI at the United Nations / 2104.12547 / ISBN:https://doi.org/10.48550/arXiv.2104.12547 / Published by ArXiv / on (web) Publishing site
Introductionn
3. Implementing ethical AI
Conclusion


Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance / 2206.11922 / ISBN:https://doi.org/10.48550/arXiv.2206.11922 / Published by ArXiv / on (web) Publishing site
Abstract
2 Related Work
3 Methodology
4 Results
5 Discussion
6 Conclusion


Beyond Near- and Long-Term: Towards a Clearer Account of Research Priorities in AI Ethics and Society / 2001.04335 / ISBN:https://doi.org/10.48550/arXiv.2001.04335 / Published by ArXiv / on (web) Publishing site
3 The Problem with the Near/Long-Term Distinction
References


ESR: Ethics and Society Review of Artificial Intelligence Research / 2106.11521 / ISBN:https://doi.org/10.48550/arXiv.2106.11521 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related Work
3 The ESR Process
4 Deployment and Evaluation
References


On the Current and Emerging Challenges of Developing Fair and Ethical AI Solutions in Financial Services / 2111.01306 / ISBN:https://doi.org/10.48550/arXiv.2111.01306 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 The Need forEthical AI in Finance
3 Practical Challengesof Ethical AI
References


A primer on AI ethics via arXiv- focus 2020-2023 / Kaggle / Published by Kaggle / on (web) Publishing site
Section 1: Introduction and concept
Section 2: History and prospective
Appendix B: Data and charts from arXiv


What does it mean to be a responsible AI practitioner: An ontology of roles and skills / 2205.03946 / ISBN:https://doi.org/10.48550/arXiv.2205.03946 / Published by ArXiv / on (web) Publishing site
2 Background
3 Methodology
4 Proposed competency framework for responsible AI practitioners


GPT detectors are biased against non-native English writers / 2304.02819 / ISBN:https://doi.org/10.48550/arXiv.2304.02819 / Published by ArXiv / on (web) Publishing site
References


Implementing Responsible AI: Tensions and Trade-Offs Between Ethics Aspects / 2304.08275 / ISBN:https://doi.org/10.48550/arXiv.2304.08275 / Published by ArXiv / on (web) Publishing site
II. Underlying Aspects
III. Interactions between Aspects
References


QB4AIRA: A Question Bank for AI Risk Assessment / 2305.09300 / ISBN:https://doi.org/10.48550/arXiv.2305.09300 / Published by ArXiv / on (web) Publishing site
2 The Question Bank: QB4AIRA
References


A multilevel framework for AI governance / 2307.03198 / ISBN:https://doi.org/10.48550/arXiv.2307.03198 / Published by ArXiv / on (web) Publishing site
6. Psychology of Trust
References


From OECD to India: Exploring cross-cultural differences in perceived trust, responsibility and reliance of AI and human experts / 2307.15452 / ISBN:https://doi.org/10.48550/arXiv.2307.15452 / Published by ArXiv / on (web) Publishing site
2. Method
Acknowledgments
References


The Ethics of AI Value Chains: An Approach for Integrating and Expanding AI Ethics Research, Practice, and Governance / 2307.16787 / ISBN:https://doi.org/10.48550/arXiv.2307.16787 / Published by ArXiv / on (web) Publishing site
2. Theory
4. Ethical Implications of AI Value Chains


Perceptions of the Fourth Industrial Revolution and Artificial Intelligence Impact on Society / 2308.02030 / ISBN:https://doi.org/10.48550/arXiv.2308.02030 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Literature Review
Methods
Results
Conclusion
References


Regulating AI manipulation: Applying Insights from behavioral economics and psychology to enhance the practicality of the EU AI Act / 2308.02041 / ISBN:https://doi.org/10.48550/arXiv.2308.02041 / Published by ArXiv / on (web) Publishing site
2 Clarifying Terminologies of Article-5: Insights from Behavioral Economics and Psychology
3 Enhancing Protection for the General Public and Vulnerable Groups


From Military to Healthcare: Adopting and Expanding Ethical Principles for Generative Artificial Intelligence / 2308.02448 / ISBN:https://doi.org/10.48550/arXiv.2308.02448 / Published by ArXiv / on (web) Publishing site
Abstract
What is Generative Artificial Intelligence?
GREAT PLEA Ethical Principles for Generative AI in Healthcare
Conclusion


Ethical Considerations and Policy Implications for Large Language Models: Guiding Responsible Development and Deployment / 2308.02678 / ISBN:https://doi.org/10.48550/arXiv.2308.02678 / Published by ArXiv / on (web) Publishing site
Introduction
System-role
Perturbation
Image-related
Hallucination
Bias and Discrimination of Training Data


Dual Governance: The intersection of centralized regulation and crowdsourced safety mechanisms for Generative AI / 2308.04448 / ISBN:https://doi.org/10.48550/arXiv.2308.04448 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background
3 Policy scope
4 Centralized regulation in the US context
5 Crowdsourced safety mechanism
6 The dual governance framework


Normative Ethics Principles for Responsible AI Systems: Taxonomy and Future Directions / 2208.12616 / ISBN:https://doi.org/10.48550/arXiv.2208.12616 / Published by ArXiv / on (web) Publishing site
3 Taxonomy of ethical principles
4 Previous operationalisation of ethical principles
References
A Methodology


Bad, mad, and cooked: Moral responsibility for civilian harms in human-AI military teams / 2211.06326 / ISBN:https://doi.org/10.48550/arXiv.2211.06326 / Published by ArXiv / on (web) Publishing site
Introduction
Responsibility in War
Computers, Autonomy and Accountability
Moral Injury
Human Factors
AI Workplace Health and Safety Framework
References


The Future of ChatGPT-enabled Labor Market: A Preliminary Study / 2304.09823 / ISBN:https://doi.org/10.48550/arXiv.2304.09823 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Results
5 Methods


A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation / 2305.11391 / ISBN:https://doi.org/10.48550/arXiv.2305.11391 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Large Language Models
3 Vulnerabilities, Attack, and Limitations
5 Falsification and Evaluation
6 Verification
7 Runtime Monitor
9 Discussions
Reference


Getting pwn'd by AI: Penetration Testing with Large Language Models / 2308.00121 / ISBN:https://doi.org/10.48550/arXiv.2308.00121 / Published by ArXiv / on (web) Publishing site
2 Background
3 LLM-based penetration testing
4 Discussion
5 A vision of AI-augmented pen-testing


Artificial Intelligence across Europe: A Study on Awareness, Attitude and Trust / 2308.09979 / ISBN:https://doi.org/10.48550/arXiv.2308.09979 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Discussion
4 Conclusions
References


Targeted Data Augmentation for bias mitigation / 2308.11386 / ISBN:https://doi.org/10.48550/arXiv.2308.11386 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related works
References


Exploring the Power of Creative AI Tools and Game-Based Methodologies for Interactive Web-Based Programming / 2308.11649 / ISBN:https://doi.org/10.48550/arXiv.2308.11649 / Published by ArXiv / on (web) Publishing site
1 Introduction
4 Enhancing User Experience through Creative AI Tools
6 Unveiling the Potential: Benefits of Interactive Web-Based Programming
9 Ethical Considerations in Integrating AI and Game Elements
10 Privacy Concerns in Interactive Web-Based Programming for Education
12 The Future Landscape: Creative AI Tools and Game-Based Methodologies in Education
14 Conclusion & Discussion
References


Collect, Measure, Repeat: Reliability Factors for Responsible AI Data Collection / 2308.12885 / ISBN:https://doi.org/10.48550/arXiv.2308.12885 / Published by ArXiv / on (web) Publishing site
2 Related Work on Data Excellence
4 Published Annotation Tasks and Datasets
5 Results
6 Discussion
References
A Agreement Analysis


Building Trust in Conversational AI: A Comprehensive Review and Solution Architecture for Explainable, Privacy-Aware Systems using LLMs and Knowledge Graph / 2308.13534 / ISBN:https://doi.org/10.48550/arXiv.2308.13534 / Published by ArXiv / on (web) Publishing site
I. Introduction
IV. Applied and technology implications for LLMs
V. Market analysis of LLMs and cross-industry use cases
VI. Solution architecture for privacy-aware and trustworthy conversational AI
VII. Discussions
References
Appendix A industry-wide LLM usecases


The Promise and Peril of Artificial Intelligence -- Violet Teaming Offers a Balanced Path Forward / 2308.14253 / ISBN:https://doi.org/10.48550/arXiv.2308.14253 / Published by ArXiv / on (web) Publishing site
3 Emerging dual-use risks and vulnerabilities in AI systems
4 Integrating red teaming, blue teaming, and ethics with violet teaming
10 Supplemental & additional details
References


Artificial Intelligence in Career Counseling: A Test Case with ResumAI / 2308.14301 / ISBN:https://doi.org/10.48550/arXiv.2308.14301 / Published by ArXiv / on (web) Publishing site
2 Literature review
4 Results and discussion


Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? / 2308.15399 / ISBN:https://doi.org/10.48550/arXiv.2308.15399 / Published by ArXiv / on (web) Publishing site
2 Related Works
4 Experiment
References


The AI Revolution: Opportunities and Challenges for the Finance Sector / 2308.16538 / ISBN:https://doi.org/10.48550/arXiv.2308.16538 / Published by ArXiv / on (web) Publishing site
Executive summary
1 Introduction
2 Key AI technology in financial services
3 Benefits of AI use in the finance sector
4 Threaths & potential pitfalls
5 Challenges
6 Regulation of AI and regulating through AI
7 Recommendations
References


Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond / 2309.00064 / ISBN:https://doi.org/10.48550/arXiv.2309.00064 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Black box and lack of transparency
3 Bias and fairness
4 Human-centric AI
5 Ethical concerns and value alignment
References


The Impact of Artificial Intelligence on the Evolution of Digital Education: A Comparative Study of OpenAI Text Generation Tools including ChatGPT, Bing Chat, Bard, and Ernie / 2309.02029 / ISBN:https://doi.org/10.48550/arXiv.2309.02029 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Related work
3. ChatGPT Training Process
4. Methods
6. Conclusion
References


Pathway to Future Symbiotic Creativity / 2209.02388 / ISBN:https://doi.org/10.48550/arXiv.2209.02388 / Published by ArXiv / on (web) Publishing site
Part 1 - 1 Generatives Systems: Mimicking Artifacts
Part 1 - 2 Appreciate Systems: Mimicking Styles
Part 1 - 3 Artistic Systems: Mimicking Inspiration
Part 2 Art Data and Human–Machine Interaction in Art Creation
Part 2 - 1 Biometric Signal Sensing Technologies and Emotion Data
Part 2 - 2 Motion Caputer Technologies and Motion Data
Part 2 - 3 Photogrammetry / Volumetric Capture
Part 2 - 4 Aesthetic Descriptor: Labelling Artefacts with Emotion
Part 3 - 2 Machine Artist Models
Part 3 - 3 Comparison with Generative Models
Part 3 - 4 Demonstration of the Proposed Framework
Part 4 NFTs and the Future Art Economy
Part 5 - 1 Authorship and Ownership of AI-generated Works of Artt
Part 5 - 3 Democratization of Art with new Technologies
References
Acknowledgment


FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging / 2109.09658 / ISBN:https://doi.org/10.48550/arXiv.2109.09658 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Fairness - For Equitable AI in Medical Imaging
3. Universality - For Standardised AI in Medical Imaging
4. Traceability - For Transparent and Dynamic AI in Medical Imaging
5. Usability - For Effective and Beneficial AI in Medical Imaging
6. Robustness - For Reliable AI in Medical Imaging
7. Explainability - For Enhanced Understanding of AI in Medical Imaging
9. Discussion and Conclusion
References


The Cambridge Law Corpus: A Corpus for Legal AI Research / 2309.12269 / ISBN:https://doi.org/10.48550/arXiv.2309.12269 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 The Cambridge Law Corpus
3 Legal and Ethical Considerations
4 Experiments
General References
C Case Outcome Task Description
D Case Outcome Annotation Instructions
F Evaluation of GPT Models
Cambridge Law Corpus: Datasheet


EALM: Introducing Multidimensional Ethical Alignment in Conversational Information Retrieval / 2310.00970 / ISBN:https://doi.org/10.48550/arXiv.2310.00970 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Dataset Construction
6 Conclusions
Appendix
References


Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities / 2310.08565 / ISBN:https://doi.org/10.48550/arXiv.2310.08565 / Published by ArXiv / on (web) Publishing site
I. Introduction and Motivation
II. AI-Robotics Systems Architecture
IV. Attack Surfaces
V. Ethical & Legal Concerns
VI. Human-Robot Interaction (HRI) Security Studies
VII. Future Research & Discussion
References


If our aim is to build morality into an artificial agent, how might we begin to go about doing so? / 2310.08295 / ISBN:https://doi.org/10.48550/arXiv.2310.08295 / Published by ArXiv / on (web) Publishing site
1 The Top-Down Approach Alone Might Be Insufficient
4 AI Governance Principles


Deepfakes, Phrenology, Surveillance, and More! A Taxonomy of AI Privacy Risks / 2310.07879 / ISBN:https://doi.org/10.48550/arXiv.2310.07879 / Published by ArXiv / on (web) Publishing site
2 Background and Related Work
3 Method
4 Taxonomy of AI Privacy Risks
5 Discussion
References


ClausewitzGPT Framework: A New Frontier in Theoretical Large Language Model Enhanced Information Operations / 2310.07099 / ISBN:https://doi.org/10.48550/arXiv.2310.07099 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Nation-State Advances in AI-driven Information Operations
Theoretical Impact of LLMs on Information Operations
ClausewitzGPT and Modern Strategy
Mathematical Foundations
Ethical and Strategic Considerations: AI Mediators in the Age of LLMs
Integrating Computational Social Science, Computational Ethics, Systems Engineering, and AI Ethics in LLMdriven Operations
Looking Forward: ClausewitzGPT
Conclusion
References


The AI Incident Database as an Educational Tool to Raise Awareness of AI Harms: A Classroom Exploration of Efficacy, Limitations, & Future Improvements / 2310.06269 / ISBN:https://doi.org/10.48550/arXiv.2310.06269 / Published by ArXiv / on (web) Publishing site
2 Research Design and Methodology
3 Analysis and Findings
Acknowledgements
References
A Consent and Data Collection Processes
B Pre-class Questionnaire (Verbatim)
G Statistical Tests


A Review of the Ethics of Artificial Intelligence and its Applications in the United States / 2310.05751 / ISBN:https://doi.org/10.48550/arXiv.2310.05751 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Literature Review
3. AI Ethical Principles
4. Implementing the Practical Use of Ethical AI Applications
References
Authors


A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics / 2310.05694 / ISBN:https://doi.org/10.48550/arXiv.2310.05694 / Published by ArXiv / on (web) Publishing site
I. INTRODUCTION
II. WHAT LLM S CAN DO FOR HEALTHCARE ? FROM FUNDAMENTAL TASKS TO ADVANCED APPLICATIONS
III. FROM PLM S TO LLM S FOR HEALTHCARE
IV. TRAIN AND USE LLM FOR HEALTHCARE
V. EVALUATION METHOD
VI. IMPROVING FAIRNESS , ACCOUNTABILITY, TRANSPARENCY, AND ETHICS
VII. FUTURE WORK AND CONCLUSION
REFERENCES


STREAM: Social data and knowledge collective intelligence platform for TRaining Ethical AI Models / 2310.05563 / ISBN:https://doi.org/10.48550/arXiv.2310.05563 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 STREAM: Social data and knowledge collective intelligence platform for TRaining Ethical AI Models
3 The applications of STREAM
References


Regulation and NLP (RegNLP): Taming Large Language Models / 2310.05553 / ISBN:https://doi.org/10.48550/arXiv.2310.05553 / Published by ArXiv / on (web) Publishing site
2 Regulation: A Short Introduction
3 LLMs: Risk and Uncertainty
4 Scientific Expertise, Social Media and Regulatory Capture
5 Regulation and NLP (RegNLP): A New Field
References


Ethics of Artificial Intelligence and Robotics in the Architecture, Engineering, and Construction Industry / 2310.05414 / ISBN:https://doi.org/10.48550/arXiv.2310.05414 / Published by ArXiv / on (web) Publishing site
2. Research Methodology
4. Systematic Review and Scientometric Analysis
5. Ethical Issues of AI and Robotics in AEC Industry
6. Discussion
7. Future Research Direction
References


Commercialized Generative AI: A Critical Study of the Feasibility and Ethics of Generating Native Advertising Using Large Language Models in Conversational Web Search / 2310.04892 / ISBN:https://doi.org/10.48550/arXiv.2310.04892 / Published by ArXiv / on (web) Publishing site
Introduction
Pilot Study: Text SERPs with Ads
Evaluation of the Pilot Study
Ethics of GEnerating Native Ads
Conclusion
References


Compromise in Multilateral Negotiations and the Global Regulation of Artificial Intelligence / 2309.17158 / ISBN:https://doi.org/10.48550/arXiv.2309.17158 / Published by ArXiv / on (web) Publishing site
Notes
Bibliography
Annex 1. Text amendments and ambiguity


Towards A Unified Utilitarian Ethics Framework for Healthcare Artificial Intelligence / 2309.14617 / ISBN:https://doi.org/10.48550/arXiv.2309.14617 / Published by ArXiv / on (web) Publishing site
Principal Ethics in Healthcare
Method
Results and Discussion


Risk of AI in Healthcare: A Comprehensive Literature Review and Study Framework / 2309.14530 / ISBN:https://doi.org/10.48550/arXiv.2309.14530 / Published by ArXiv / on (web) Publishing site
4. Technical Risks
References


Autonomous Vehicles an overview on system, cyber security, risks, issues, and a way forward / 2309.14213 / ISBN:https://doi.org/10.48550/arXiv.2309.14213 / Published by ArXiv / on (web) Publishing site
2. Autonomous vehicles
4. Traffic Flow prediction in Autonomous vehicles
5. Cybersecurity Risks
6. Risk management
7. Issues
9. References


The Return on Investment in AI Ethics: A Holistic Framework / 2309.13057 / ISBN:https://doi.org/10.48550/arXiv.2309.13057 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. AI Ethics
3. Return on Investment (ROI)
5. Discussion
6. References


Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust / 2309.10318 / ISBN:https://doi.org/10.48550/arXiv.2309.10318 / Published by ArXiv / on (web) Publishing site
Introduction
Trust in AI
Different Types of Trust
Trust and AI Ethics Principles
References


In Consideration of Indigenous Data Sovereignty: Data Mining as a Colonial Practice / 2309.10215 / ISBN:https://doi.org/10.48550/arXiv.2309.10215 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Definitions of Terms
5 Relating Case Studies to Indigenous Data Sovereignty and CARE Principles
7 Conclusions and Recommendations
References


The Glamorisation of Unpaid Labour: AI and its Influencers / 2308.02399 / ISBN:https://doi.org/10.48550/arXiv.2308.02399 / Published by ArXiv / on (web) Publishing site
References


AI & Blockchain as sustainable teaching and learning tools to cope with the 4IR / 2305.01088 / ISBN:https://doi.org/10.48550/arXiv.2305.01088 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. AI and blockchain in education: An overview of the benefits and challenges
4. Blockchain-based credentialing and certification
6. Blockchain-based decentralized learning networks
7. AI-powered content creation and curation
11.References


Toward an Ethics of AI Belief / 2304.14577 / ISBN:https://doi.org/10.48550/arXiv.2304.14577 / Published by ArXiv / on (web) Publishing site
2. “Belief” in Humans and AI
3. Proposed Novel Topics in an Ethics of AI Belief
4. Nascent Extant Work that Falls Within the Ethics of AI Belief
References


Ensuring Trustworthy Medical Artificial Intelligence through Ethical and Philosophical Principles / 2304.11530 / ISBN:https://doi.org/10.48550/arXiv.2304.11530 / Published by ArXiv / on (web) Publishing site
Introduction
Ethical datasets and algorithm development guidelines
Towards solving key ethical challenges in Medical AI
Discussion


Responsible AI Pattern Catalogue: A Collection of Best Practices for AI Governance and Engineering / 2209.04963 / ISBN:https://doi.org/10.48550/arXiv.2209.04963 / Published by ArXiv / on (web) Publishing site
2 Methodology
3 Governance Patterns
4 Process Patterns
5 Product Patterns
References


The Ethics of AI Value Chains: An Approach for Integrating and Expanding AI Ethics Research, Practice, and Governance / 2307.16787 / ISBN:https://doi.org/10.48550/arXiv.2307.16787 / Published by ArXiv / on (web) Publishing site
Bibliography
Appendix A: Integrated Inventory of Ethical Concerns, Value Chains Actors, Resourcing Activities, & Sampled Sources


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare / 2309.12325 / ISBN:https://doi.org/10.48550/arXiv.2309.12325 / Published by ArXiv / on (web) Publishing site
FUTURE-AI GUIDELINE


Language Agents for Detecting Implicit Stereotypes in Text-to-Image Models at Scale / 2310.11778 / ISBN:https://doi.org/10.48550/arXiv.2310.11778 / Published by ArXiv / on (web) Publishing site
2 Agent Design
Appendix B Experiment Details


Specific versus General Principles for Constitutional AI / 2310.13798 / ISBN:https://doi.org/10.48550/arXiv.2310.13798 / Published by ArXiv / on (web) Publishing site
4 Reinforcement Learning with Good-for-Humanity Preference Models
References
G Over-Training on Good for Humanity
H Samples
I Responses on Prompts from PALMS, LaMDA, and InstructGPT


The Self 2.0: How AI-Enhanced Self-Clones Transform Self-Perception and Improve Presentation Skills / 2310.15112 / ISBN:https://doi.org/10.48550/arXiv.2310.15112 / Published by ArXiv / on (web) Publishing site
3 Method
4 Findings
5 Discussion


Systematic AI Approach for AGI: Addressing Alignment, Energy, and AGI Grand Challenges / 2310.15274 / ISBN:https://doi.org/10.48550/arXiv.2310.15274 / Published by ArXiv / on (web) Publishing site
Abstract
4 Systematic AI for Energy Wall
5 System Design for AI Alignment
6 System Insights from the Brain
References


AI Alignment and Social Choice: Fundamental Limitations and Policy Implications / 2310.16048 / ISBN:https://doi.org/10.48550/arXiv.2310.16048 / Published by ArXiv / on (web) Publishing site
1 Introduction
References


A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends, Vision , and Challenges / 2310.16360 / ISBN:https://doi.org/10.48550/arXiv.2310.16360 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Review Methodology
IV. Artificial Intelligence Embedded UAV
V. Challenges and Future Aspect on AI Enabled UAV
References
Authors Bios


Unpacking the Ethical Value Alignment in Big Models / 2310.17551 / ISBN:https://doi.org/10.48550/arXiv.2310.17551 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Risks and Ethical Issues of Big Model
3 Investigating the Ethical Values of Large Language Models
4 Equilibrium Alignment: A Prospective Paradigm for Ethical Value Alignmen
References


Moral Responsibility for AI Systems / 2310.18040 / ISBN:https://doi.org/10.48550/arXiv.2310.18040 / Published by ArXiv / on (web) Publishing site
References


AI for Open Science: A Multi-Agent Perspective for Ethically Translating Data to Knowledge / 2310.18852 / ISBN:https://doi.org/10.48550/arXiv.2310.18852 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background and Related Work
3 A Formal Language of AI for Open Science
4 Optimizing an Openness Metric in AI for Science
5 Why Openness in AI for Science
References


Artificial Intelligence Ethics Education in Cybersecurity: Challenges and Opportunities: a focus group report / 2311.00903 / ISBN:https://doi.org/10.48550/arXiv.2311.00903 / Published by ArXiv / on (web) Publishing site
Educational Challenges of Teaching AI Ethics in Cybersecurity and Core Ethical Principles
Technical Issues
Communication skills in cybersecurity and ethics
References


Human participants in AI research: Ethics and transparency in practice / 2311.01254 / ISBN:https://doi.org/10.48550/arXiv.2311.01254 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Contextual Concerns: Why AI Research Needs its Own Guidelines
4 Principles in Practice: Guidelines for AI Research with Human Participants
References
A Evaluating Current Practices for Human-Participants Research
B Placing Research Ethics for Human Participants in Historical Context
C Defining the Scope of Research Participation in AI Research
D A Note on Terminology


LLMs grasp morality in concept / 2311.02294 / ISBN:https://doi.org/10.48550/arXiv.2311.02294 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 A General Theory of Meaning
4 The Moral Model
References


Educating for AI Cybersecurity Work and Research: Ethics, Systems Thinking, and Communication Requirements / 2311.04326 / ISBN:https://doi.org/10.48550/arXiv.2311.04326 / Published by ArXiv / on (web) Publishing site
Research questions
References


Towards Effective Paraphrasing for Information Disguise / 2311.05018 / ISBN:https://doi.org/10.1007/978-3-031-28238-6_22 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Methodology
4 Evaluation
5 Conclusion
References


Kantian Deontology Meets AI Alignment: Towards Morally Grounded Fairness Metrics / 2311.05227 / ISBN:https://doi.org/10.48550/arXiv.2311.05227 / Published by ArXiv / on (web) Publishing site
4 Deontological AI Alignment


Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing / 2304.02017 / ISBN:https://doi.org/10.48550/arXiv.2304.02017 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Overview of ChatGPT and its capabilities
3 Transformers and pre-trained language models
4 Applications of ChatGPT in real-world scenarios
6 Limitations and potential challenges
7 Ethical considerations when using ChatGPT
8 Prompt engineering and generation
10 Future directions for ChatGPT in vision domain
References


Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, And Mitigation Strategies / 2304.07683 / ISBN:https://doi.org/10.48550/arXiv.2304.07683 / Published by ArXiv / on (web) Publishing site
II. Sources of bias in AI
IV. Mitigation strategies for bias in AI
References


Towards ethical multimodal systems / 2304.13765 / ISBN:https://doi.org/10.48550/arXiv.2304.13765 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Crafting an Ethical Dataset
4 A Multimodal Ethics Classifier


A Brief History of Prompt: Leveraging Language Models. (Through Advanced Prompting) / 2310.04438 / ISBN:https://doi.org/10.48550/arXiv.2310.04438 / Published by ArXiv / on (web) Publishing site
Abstract
II. Introduction
III. Prehistoric prompting: pre NN-era
IV. History of NLP between 2010 and 2015: the pre-attention mechanism era
VI. 2015: birth of the transformer
VIII. The third wave 2018: the rise of transformers
IX. 2019: THE YEAR OF CONTROL
XI. 2022-current: beyond language generation
XII. Conclusions


Synergizing Human-AI Agency: A Guide of 23 Heuristics for Service Co-Creation with LLM-Based Agents / 2310.15065 / ISBN:https://doi.org/10.48550/arXiv.2310.15065 / Published by ArXiv / on (web) Publishing site
2 Related work
3 Method
4 Findings
5 Discussion
References


She had Cobalt Blue Eyes: Prompt Testing to Create Aligned and Sustainable Language Models / 2310.18333 / ISBN:https://doi.org/10.48550/arXiv.2310.18333 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related Works
3 ReFLeCT: Robust, Fair, and Safe LLM Construction Test Suite
4 Empirical Evaluation and Outcomes
References


Safety, Trust, and Ethics Considerations for Human-AI Teaming in Aerospace Control / 2311.08943 / ISBN:https://doi.org/10.48550/arXiv.2311.08943 / Published by ArXiv / on (web) Publishing site
IV. Trust
V. Ethics
References


How Trustworthy are Open-Source LLMs? An Assessment under Malicious Demonstrations Shows their Vulnerabilities / 2311.09447 / ISBN:https://doi.org/10.48550/arXiv.2311.09447 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Methodology
References


Prudent Silence or Foolish Babble? Examining Large Language Models' Responses to the Unknown / 2311.09731 / ISBN:https://doi.org/10.48550/arXiv.2311.09731 / Published by ArXiv / on (web) Publishing site
Abstract
2 UnknownBench: Evaluating LLMs on the Unknown
B Confidence Elicitation Method Comparison


Revolutionizing Customer Interactions: Insights and Challenges in Deploying ChatGPT and Generative Chatbots for FAQs / 2311.09976 / ISBN:https://doi.org/10.48550/arXiv.2311.09976 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Chatbots Background and Scope of Research
3. Chatbot approaches overview: Taxonomy of existing methods
4. ChatGPT
5. Applications
7. Future Research Directions
References


Practical Cybersecurity Ethics: Mapping CyBOK to Ethical Concerns / 2311.10165 / ISBN:https://doi.org/10.48550/arXiv.2311.10165 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background
3 Methodology
4 Findings
5 Discussion
6 Limitations
7 Conclusion


First, Do No Harm: Algorithms, AI, and Digital Product Liability Managing Algorithmic Harms Though Liability Law and Market Incentives / 2311.10861 / ISBN:https://doi.org/10.48550/arXiv.2311.10861 / Published by ArXiv / on (web) Publishing site
Bloustein Local and the Center for Urban Policy Research
Harms, Risk, and Liability Practices
Appendix A - What is an Algorithmic Harm? And a Bibliography
Appendix C - List of General Harms Created by Digital Products Provided by Claude.AI
Appendix D - List of Organization Acronyms
Appendix E - A Sampling of References Addressing Liability and Digital Products


Case Repositories: Towards Case-Based Reasoning for AI Alignment / 2311.10934 / ISBN:https://doi.org/10.48550/arXiv.2311.10934 / Published by ArXiv / on (web) Publishing site
2 Proposed Process
References


Responsible AI Considerations in Text Summarization Research: A Review of Current Practices / 2311.11103 / ISBN:https://doi.org/10.48550/arXiv.2311.11103 / Published by ArXiv / on (web) Publishing site
3 Methods
4 Findings
5 Discussion and Recommendations
References
B Methodology


Assessing AI Impact Assessments: A Classroom Study / 2311.11193 / ISBN:https://doi.org/10.48550/arXiv.2311.11193 / Published by ArXiv / on (web) Publishing site
1 Introduction
4 Findings
Acknowledgments and Disclosure of Funding
A Overview of AIIA Instruments


GPT in Data Science: A Practical Exploration of Model Selection / 2311.11516 / ISBN:https://doi.org/10.48550/arXiv.2311.11516 / Published by ArXiv / on (web) Publishing site
III. Approach: capturing and representing heuristics behind GPT's decision-making process


Responsible AI Research Needs Impact Statements Too / 2311.11776 / ISBN:https://doi.org/10.48550/arXiv.2311.11776 / Published by ArXiv / on (web) Publishing site
What are other research communities doing?
Concluding Reflections
References


Large Language Models in Education: Vision and Opportunities / 2311.13160 / ISBN:https://doi.org/10.48550/arXiv.2311.13160 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Education and LLMS
III. Key technologies for EDULLMS
IV. LLM-empowered education
V. Key points in LLMSEDU
VI. Challenges and future directions
References


The Rise of Creative Machines: Exploring the Impact of Generative AI / 2311.13262 / ISBN:https://doi.org/10.48550/arXiv.2311.13262 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
IV. Risks of generative AI
VI. Conclusion
References


Towards Auditing Large Language Models: Improving Text-based Stereotype Detection / 2311.14126 / ISBN:https://doi.org/10.48550/arXiv.2311.14126 / Published by ArXiv / on (web) Publishing site
References
6 Appendix


Ethical Implications of ChatGPT in Higher Education: A Scoping Review / 2311.14378 / ISBN:https://doi.org/10.48550/arXiv.2311.14378 / Published by ArXiv / on (web) Publishing site
Introduction
Research Method
Results
References


Potential Societal Biases of ChatGPT in Higher Education: A Scoping Review / 2311.14381 / ISBN:https://doi.org/10.48550/arXiv.2311.14381 / Published by ArXiv / on (web) Publishing site
INTRODUCTION
FINDINGS
DISCUSSION


RAISE -- Radiology AI Safety, an End-to-end lifecycle approach / 2311.14570 / ISBN:https://doi.org/10.48550/arXiv.2311.14570 / Published by ArXiv / on (web) Publishing site
2. Pre-Deployment phase
3. Production deployment monitoring phase
Bibliography


Ethics and Responsible AI Deployment / 2311.14705 / ISBN:https://doi.org/10.48550/arXiv.2311.14705 / Published by ArXiv / on (web) Publishing site
1. Introduction: The Role of Algorithms in Protecting Privacy
3. Ethical considerations in AI decision-making
4. Addressing bias, transparency, and accountability
5. Ethical AI design principles and guidelines
7. Establishing responsible AI governance and oversight
11. References


From deepfake to deep useful: risks and opportunities through a systematic literature review / 2311.15809 / ISBN:https://doi.org/10.48550/arXiv.2311.15809 / Published by ArXiv / on (web) Publishing site
Abstract
2. Material and methods
3. Results
References


Generative AI and US Intellectual Property Law / 2311.16023 / ISBN:https://doi.org/10.48550/arXiv.2311.16023 / Published by ArXiv / on (web) Publishing site
Abstract
II. US Patent law
III. US Copyright law
V. Potential harms and mitigation
VI. Conclusion


Survey on AI Ethics: A Socio-technical Perspective / 2311.17228 / ISBN:https://doi.org/10.48550/arXiv.2311.17228 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Privacy and data protection
3 Transparency and explainability
4 Fairness and equity
5 Responsiblity, accountability, and regulations
7 Conclusion
References


Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models / 2311.17394 / ISBN:https://doi.org/10.48550/arXiv.2311.17394 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
II. Background
III. The rise of large AI models
IV. Societal implications
V. Technical defense mechanisms
VI. Cross-platform strategies
VII. Ethical considerations
VIII. Proposed integrated defense framework
IX. Discussion
X. Conclusion
References


Navigating Privacy and Copyright Challenges Across the Data Lifecycle of Generative AI / 2311.18252 / ISBN:https://doi.org/10.48550/arXiv.2311.18252 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Legal Basis of Privacy and Copyright Concerns over Generative AI
3 Mapping Challenges throughout the Data Lifecycle
4 Lifecycle Approaches
References


From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety / 2312.02078 / ISBN:https://doi.org/10.48550/arXiv.2312.02078 / Published by ArXiv / on (web) Publishing site
Introduction
Software system features


Understanding Teacher Perspectives and Experiences after Deployment of AI Literacy Curriculum in Middle-school Classrooms / 2312.04839 / ISBN:https://doi.org/10.48550/arXiv.2312.04839 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Results
4 Conclusions


Generative AI in Higher Education: Seeing ChatGPT Through Universities' Policies, Resources, and Guidelines / 2312.05235 / ISBN:https://doi.org/10.48550/arXiv.2312.05235 / Published by ArXiv / on (web) Publishing site
Abstract
4. Method
6. Discussion
7. Conclusion


Contra generative AI detection in higher education assessments / 2312.05241 / ISBN:https://doi.org/10.48550/arXiv.2312.05241 / Published by ArXiv / on (web) Publishing site
2. The pitfalls in detecting generative AI output
4. Teach critical usage of AI
References


Intelligence Primer / 2008.07324 / ISBN:https://doi.org/10.48550/arXiv.2008.07324 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Human intelligence
4 Bias, prejudice, and individuality
6 Measuring intelligence
7 Mathematically modeling intelligence
8 Consciousness
9 Augmenting human intelligence
12 Large language models and Generative AI
14 Wrong numbers
15 Final thoughts
References


RE-centric Recommendations for the Development of Trustworthy(er) Autonomous Systems / 2306.01774 / ISBN:https://doi.org/10.48550/arXiv.2306.01774 / Published by ArXiv / on (web) Publishing site
References


Ethical Considerations Towards Protestware / 2306.10019 / ISBN:https://doi.org/10.48550/arXiv.2306.10019 / Published by ArXiv / on (web) Publishing site
III. Ethics: a primer


Control Risk for Potential Misuse of Artificial Intelligence in Science / 2312.06632 / ISBN:https://doi.org/10.48550/arXiv.2312.06632 / Published by ArXiv / on (web) Publishing site
2 Risks of Misuse for Artificial Intelligence in Science
3 Control the Risks of AI Models in Science
5 Discussion
6 Related Works
References
7 Ethical Impacts
Appendix A Assessing the Risks of AI Misuse in Scientific Research
Appendix B Details of Risks Demonstration in Chemical Science
Appendix C Detailed Implementation of SciGuard
Appendix D Details of Benchmark Results


Disentangling Perceptions of Offensiveness: Cultural and Moral Correlates / 2312.06861 / ISBN:https://doi.org/10.48550/arXiv.2312.06861 / Published by ArXiv / on (web) Publishing site
Data Collection
References
A Appendix


The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment / 2312.07086 / ISBN:https://doi.org/10.48550/arXiv.2312.07086 / Published by ArXiv / on (web) Publishing site
Literature
Problematizing The View Of GenAI Content As Academic Misconduct
The AI Assessment Scale
Conclusion
References


Culturally Responsive Artificial Intelligence -- Problems, Challenges and Solutions / 2312.08467 / ISBN:https://doi.org/10.48550/arXiv.2312.08467 / Published by ArXiv / on (web) Publishing site
Introduction
Artificial intelligence – concept and ethical background
Culturally responsive AI – current landscape
References


Investigating Responsible AI for Scientific Research: An Empirical Study / 2312.09561 / ISBN:https://doi.org/10.48550/arXiv.2312.09561 / Published by ArXiv / on (web) Publishing site
I. Introduction
III. Research methodology
IV. Results
References
Appendix B – Interview Questionnaire


Designing Guiding Principles for NLP for Healthcare: A Case Study of Maternal Health / 2312.11803 / ISBN:https://doi.org/10.48550/arXiv.2312.11803 / Published by ArXiv / on (web) Publishing site
1 Objective
2 Background and significance
3 Materials and methods
4 Results
5 Discussion
References
A Extended Survey Results
B Extended Guiding Principles
C Full survey questions


Beyond Fairness: Alternative Moral Dimensions for Assessing Algorithms and Designing Systems / 2312.12559 / ISBN:https://doi.org/10.48550/arXiv.2312.12559 / Published by ArXiv / on (web) Publishing site
2 The Reign of Algorithmic Fairness
References


Learning Human-like Representations to Enable Learning Human Values / 2312.14106 / ISBN:https://doi.org/10.48550/arXiv.2312.14106 / Published by ArXiv / on (web) Publishing site
2. Related Work
3. Experiments on Synthetic Data
4. Experiments on Human Data using Language Models
References


Improving Task Instructions for Data Annotators: How Clear Rules and Higher Pay Increase Performance in Data Annotation in the AI Economy / 2312.14565 / ISBN:https://doi.org/10.48550/arXiv.2312.14565 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Theoretical background and hypotheses
III. Method
V. Discussion
References


Culturally-Attuned Moral Machines: Implicit Learning of Human Value Systems by AI through Inverse Reinforcement Learning / 2312.17479 / ISBN:https://doi.org/10.48550/arXiv.2312.17479 / Published by ArXiv / on (web) Publishing site
Experimental Study
Results
References


Autonomous Threat Hunting: A Future Paradigm for AI-Driven Threat Intelligence / 2401.00286 / ISBN:https://doi.org/10.48550/arXiv.2401.00286 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Foundations of AI-driven threat intelligence
3. Autonomous threat hunting: conceptual framework
4. State-of-the-art AI techniques in autonomous threat hunting
6. Case studies and applications
8. Future directions and emerging trends
9. Conclusion
References


Exploring the Frontiers of LLMs in Psychological Applications: A Comprehensive Review / 2401.01519 / ISBN:https://doi.org/10.48550/arXiv.2401.01519 / Published by ArXiv / on (web) Publishing site
2. LLMs in cognitive and behavioral psychology
3. LLMs in clinical and counseling psychology
4. LLMs in educational and developmental psychology
5. LLMs in social and cultural psychology
6. LLMs as research tools in psychology
7. Challenges and future directions
8. Conclusion


Synthetic Data in AI: Challenges, Applications, and Ethical Implications / 2401.01629 / ISBN:https://doi.org/10.48550/arXiv.2401.01629 / Published by ArXiv / on (web) Publishing site
2. The generation of synthetic data
3. The usage of synthetic data
4. Risks and Challenges in Utilizing Synthetic Datasets for AI
References


MULTI-CASE: A Transformer-based Ethics-aware Multimodal Investigative Intelligence Framework / 2401.01955 / ISBN:https://doi.org/10.48550/arXiv.2401.01955 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
II. Related work
III. Methodology: model development
IV. System design
V. Evaluation
VII. Conclusion
References


AI Ethics Principles in Practice: Perspectives of Designers and Developers / 2112.07467 / ISBN:https://doi.org/10.48550/arXiv.2112.07467 / Published by ArXiv / on (web) Publishing site
III. Methods
IV. Results
V. Discussion and suggestions
References


Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models / 2310.19917 / ISBN:https://doi.org/10.48550/arXiv.2310.19917 / Published by ArXiv / on (web) Publishing site
Materials and methods
Results
Discussion


Resolving Ethics Trade-offs in Implementing Responsible AI / 2401.08103 / ISBN:https://doi.org/10.48550/arXiv.2401.08103 / Published by ArXiv / on (web) Publishing site
II. Approaches for Resolving Trade-offs
References


Towards Responsible AI in Banking: Addressing Bias for Fair Decision-Making / 2401.08691 / ISBN:https://doi.org/10.48550/arXiv.2401.08691 / Published by ArXiv / on (web) Publishing site
Contents / List of figures / List of tables / Acronyms
1 Introduction
3 Bias on demand: a framework for generating synthetic data with bias
4 Fairness metrics landscape in machine learning
II Mitigating bias - 5 Fairness mitigation
6 FFTree: a flexible tree to mitigate multiple fairness criteria
III Accounting for bias - 7 Addressing fairness in the banking sector
8 Fairview: an evaluative AI support for addressing fairness
9 Towards fairness through time
Bibliography


Business and ethical concerns in domestic Conversational Generative AI-empowered multi-robot systems / 2401.09473 / ISBN:https://doi.org/10.48550/arXiv.2401.09473 / Published by ArXiv / on (web) Publishing site
2 Background
3 Method
4 Results
5 Discussion
References


FAIR Enough How Can We Develop and Assess a FAIR-Compliant Dataset for Large Language Models' Training? / 2401.11033 / ISBN:https://doi.org/10.48550/arXiv.2401.11033 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 FAIR Data Principles: Theoretical Background and Significance
3 Data Management Challenges in Large Language Models
4 Framework for FAIR Data Principles Integration in LLM Development
5 Discussion
References
Appendices


Enabling Global Image Data Sharing in the Life Sciences / 2401.13023 / ISBN:https://doi.org/10.48550/arXiv.2401.13023 / Published by ArXiv / on (web) Publishing site
2. Background
3. Use cases representing different image data types and their challenges and status for sharing


Five ethical principles for generative AI in scientific research / 2401.15284 / ISBN:https://doi.org/10.48550/arXiv.2401.15284 / Published by ArXiv / on (web) Publishing site
Principle 1: Understand model training and output
Principle 2: Respect privacy, confidentiality, and copyright
Concluding remarks
References


A Scoping Study of Evaluation Practices for Responsible AI Tools: Steps Towards Effectiveness Evaluations / 2401.17486 / ISBN:https://doi.org/10.48550/arXiv.2401.17486 / Published by ArXiv / on (web) Publishing site
3 Methods
4 RAI tool evaluation practices
6 Limitations
References
D Summary of themes and codes


Detecting Multimedia Generated by Large AI Models: A Survey / 2402.00045 / ISBN:https://doi.org/10.48550/arXiv.2402.00045 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
3 Detection
5 Discussion
6 Conclusion
References
Authors' bios


Responsible developments and networking research: a reflection beyond a paper ethical statement / 2402.00442 / ISBN:https://doi.org/10.48550/arXiv.2402.00442 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Networking research today
3 Beyond technical dimensions
4 Sense of engagement and responsibility
References


Generative Artificial Intelligence in Higher Education: Evidence from an Analysis of Institutional Policies and Guidelines / 2402.01659 / ISBN:https://doi.org/10.48550/arXiv.2402.01659 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Related literature
3. Research study
4. Findings
References


Trust and ethical considerations in a multi-modal, explainable AI-driven chatbot tutoring system: The case of collaboratively solving Rubik's Cubeà / 2402.01760 / ISBN:https://doi.org/10.48550/arXiv.2402.01760 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
2. Literature review
3. Methodology
4. Discussion
5. Conclusion
References
B. An Example Dialog With Sentiment Analysis


Commercial AI, Conflict, and Moral Responsibility: A theoretical analysis and practical approach to the moral responsibilities associated with dual-use AI technology / 2402.01762 / ISBN:https://doi.org/10.48550/arXiv.2402.01762 / Published by ArXiv / on (web) Publishing site
3 Moral and ethical obligations when developing crossover AI technology
4 Recommendations to address threats posed by crossover AI technology
References


(A)I Am Not a Lawyer, But...: Engaging Legal Experts towards Responsible LLM Policies for Legal Advice / 2402.01864 / ISBN:https://doi.org/10.48550/arXiv.2402.01864 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related work and our approach
3 Methods: case-based expert deliberation
4 Results
5 Discussion
6 Conclusion
References
A Provided AI response strategies and examples
B Workshop participant information


POLARIS: A framework to guide the development of Trustworthy AI systems / 2402.05340 / ISBN:https://doi.org/10.48550/arXiv.2402.05340 / Published by ArXiv / on (web) Publishing site
4 The POLARIS framework
5 POLARIS framework application
References


Face Recognition: to Deploy or not to Deploy? A Framework for Assessing the Proportional Use of Face Recognition Systems in Real-World Scenarios / 2402.05731 / ISBN:https://doi.org/10.48550/arXiv.2402.05731 / Published by ArXiv / on (web) Publishing site
2. Background
4. Proposed framework
5. The framework in practice
6. Compliance with International Regulations
7. Conclusions and future work


Ethics in AI through the Practitioner's View: A Grounded Theory Literature Review / 2206.09514 / ISBN:https://doi.org/10.48550/arXiv.2206.09514 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background
4 Challenges, Threats and Limitations
5 Findings
7 Methodological Lessons Learned
A List of Included Studies
Data Availability Statement
References
Authors


Generative Artificial Intelligence in Healthcare: Ethical Considerations and Assessment Checklist / 2311.02107 / ISBN:https://doi.org/10.48550/arXiv.2311.02107 / Published by ArXiv / on (web) Publishing site
Introduction
Methods
Results
Discussion
Data sharing
Reference
Appendix


How do machines learn? Evaluating the AIcon2abs method / 2401.07386 / ISBN:https://doi.org/10.48550/arXiv.2401.07386 / Published by ArXiv / on (web) Publishing site
References


I Think, Therefore I am: Benchmarking Awareness of Large Language Models Using AwareBench / 2401.17882 / ISBN:https://doi.org/10.48550/arXiv.2401.17882 / Published by ArXiv / on (web) Publishing site
2 Related Work
3 Awareness in LLMs
4 Awareness Dataset: AWAREEVAL
5 Experiments
References
A AWAREEVAL Dataset Details
B Experimental Settings & Results


Mapping the Ethics of Generative AI: A Comprehensive Scoping Review / 2402.08323 / ISBN:https://doi.org/10.48550/arXiv.2402.08323 / Published by ArXiv / on (web) Publishing site
3 Results
4 Discussion
References


Taking Training Seriously: Human Guidance and Management-Based Regulation of Artificial Intelligence / 2402.08466 / ISBN:https://doi.org/10.48550/arXiv.2402.08466 / Published by ArXiv / on (web) Publishing site
2 Emerging Management-based AI Regulation
4 Techniques of Human-Guided Training
5 Advantages of Human-Guided Training
6 Limitations
References


User Modeling and User Profiling: A Comprehensive Survey / 2402.09660 / ISBN:https://doi.org/10.48550/arXiv.2402.09660 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Analysis of the Terminology
3 Paradigm Shifts and New Trends
4 Current Taxonomy
5 Discussion and Future Research Directions
References


Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence / 2402.09880 / ISBN:https://doi.org/10.48550/arXiv.2402.09880 / Published by ArXiv / on (web) Publishing site
II. Background and Related Work
IV. Technological Aspects
VI. Human Dynamics
VII. Discussions
References
Authors
Appendix A Examples of Benchmark Inadequacies in Technological Aspects


Evolving AI Collectives to Enhance Human Diversity and Enable Self-Regulation / 2402.12590 / ISBN:https://doi.org/10.48550/arXiv.2402.12590 / Published by ArXiv / on (web) Publishing site
2. Emergence of Free-Formed AI Collectives
5. Open Challenges for Free-Formed AI Collectives
References


What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents / 2402.13184 / ISBN:https://doi.org/10.48550/arXiv.2402.13184 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related Work
3 CosmoAgent Simulation Setting
4 CosmoAgent Architecture
5 Evaluation
6 Experimental Design
7 Results
A CosmoAgent Prompt
B Secretary Agent Prompt
References


The METRIC-framework for assessing data quality for trustworthy AI in medicine: a systematic review / 2402.13635 / ISBN:https://doi.org/10.48550/arXiv.2402.13635 / Published by ArXiv / on (web) Publishing site
Introduction
METRIC-framework for medical training data
Methods
References


The European Commitment to Human-Centered Technology: The Integral Role of HCI in the EU AI Act's Success / 2402.14728 / ISBN:https://doi.org/10.48550/arXiv.2402.14728 / Published by ArXiv / on (web) Publishing site
3 There is no reliable AI regulation without a sound theory of human-AI interaction
4 There is no trustworthy AI without HCI
6 Conclusion: Navigating the future of AI and HCI within the EU AI Act framework
References


Multi-stakeholder Perspective on Responsible Artificial Intelligence and Acceptability in Education / 2402.15027 / ISBN:https://doi.org/10.48550/arXiv.2402.15027 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background
3 Materials and Methods
6 Discussion
References
Appendix 1 Scenarios
Appendix 2 Modified psychometric scales


Autonomous Vehicles: Evolution of Artificial Intelligence and Learning Algorithms / 2402.17690 / ISBN:https://doi.org/10.48550/arXiv.2402.17690 / Published by ArXiv / on (web) Publishing site
I. Introduction
IV. AI’S Role in the Emerging Trend of Internet of Things (IOT) Ecosystem for Autonomous Vehicles
VI. AI and Learning Algorithms Statistics for Autonomous Vehicles
References


Envisioning the Applications and Implications of Generative AI for News Media / 2402.18835 / ISBN:https://doi.org/10.48550/arXiv.2402.18835 / Published by ArXiv / on (web) Publishing site
2 The Suitability of Generative AI for Newsroom Tasks
References


FATE in MMLA: A Student-Centred Exploration of Fairness, Accountability, Transparency, and Ethics in Multimodal Learning Analytics / 2402.19071 / ISBN:https://doi.org/10.48550/arXiv.2402.19071 / Published by ArXiv / on (web) Publishing site
3. Methods
4. Results
5. Discussion
References


Guidelines for Integrating Value Sensitive Design in Responsible AI Toolkits / 2403.00145 / ISBN:https://doi.org/10.48550/arXiv.2403.00145 / Published by ArXiv / on (web) Publishing site
3 Methodology
4 Results
5 Discussion
References
A Survey Questions


The Minimum Information about CLinical Artificial Intelligence Checklist for Generative Modeling Research (MI-CLAIM-GEN) / 2403.02558 / ISBN:https://doi.org/10.48550/arXiv.2403.02558 / Published by ArXiv / on (web) Publishing site
Abstract
Part 1. Study design
Part 2. A new train-test split for prompt development and few-shot learning
Part 5. Interpretability of generative models
Table 1. Updated MI-CLAIM checklist for generative AI clinical studies.
References


Towards an AI-Enhanced Cyber Threat Intelligence Processing Pipeline / 2403.03265 / ISBN:https://doi.org/10.48550/arXiv.2403.03265 / Published by ArXiv / on (web) Publishing site
I. Introduction & Motivation
II. Background & Literature Review
III. The AI-Enhanced CTI Processing Pipeline
IV. Challenges and Considerations
References
Authors


A Survey on Human-AI Teaming with Large Pre-Trained Models / 2403.04931 / ISBN:https://doi.org/10.48550/arXiv.2403.04931 / Published by ArXiv / on (web) Publishing site
2 AI Model Improvements with Human-AI Teaming
3 Effective Human-AI Joint Systems
4 Safe, Secure and Trustworthy AI
5 Applications
References


Generative AI in Higher Education: Seeing ChatGPT Through Universities' Policies, Resources, and Guidelines / 2312.05235 / ISBN:https://doi.org/10.48550/arXiv.2312.05235 / Published by ArXiv / on (web) Publishing site
References


Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance / 2206.11922 / ISBN:https://doi.org/10.48550/arXiv.2206.11922 / Published by ArXiv / on (web) Publishing site
References


How Trustworthy are Open-Source LLMs? An Assessment under Malicious Demonstrations Shows their Vulnerabilities / 2311.09447 / ISBN:https://doi.org/10.48550/arXiv.2311.09447 / Published by ArXiv / on (web) Publishing site
B Baseline Setup


Exploring the Frontiers of LLMs in Psychological Applications: A Comprehensive Review / 2401.01519 / ISBN:https://doi.org/10.48550/arXiv.2401.01519 / Published by ArXiv / on (web) Publishing site
References


AGI Artificial General Intelligence for Education / 2304.12479 / ISBN:https://doi.org/10.48550/arXiv.2304.12479 / Published by ArXiv / on (web) Publishing site
2. What is AGI
3. The Potentials of AGI in Transforming Future Education
5. Discussion
6. Conclusion
References


Moral Sparks in Social Media Narratives / 2310.19268 / ISBN:https://doi.org/10.48550/arXiv.2310.19268 / Published by ArXiv / on (web) Publishing site
1. Introduction
3. Data
4. Methods
6. Discussion and Conclusion
References


Responsible Artificial Intelligence: A Structured Literature Review / 2403.06910 / ISBN:https://doi.org/10.48550/arXiv.2403.06910 / Published by ArXiv / on (web) Publishing site
3. Analysis
4. Discussion
5. Research Limitations
References


Legally Binding but Unfair? Towards Assessing Fairness of Privacy Policies / 2403.08115 / ISBN:https://doi.org/10.48550/arXiv.2403.08115 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Problem Statement
4 Informational Fairness
5 Representational Fairness
8 Conclusion
References


Towards a Privacy and Security-Aware Framework for Ethical AI: Guiding the Development and Assessment of AI Systems / 2403.08624 / ISBN:https://doi.org/10.48550/arXiv.2403.08624 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Theoretical Background
3 Research Methodology
4 Results of the Systematic Literature Review
References


Review of Generative AI Methods in Cybersecurity / 2403.08701 / ISBN:https://doi.org/10.48550/arXiv.2403.08701 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Attacking GenAI
3 Cyber Offense
4 Cyber Defence
5 Implications of Generative AI in Social, Legal, and Ethical Domains
References


Evaluation Ethics of LLMs in Legal Domain / 2403.11152 / ISBN:https://doi.org/10.48550/arXiv.2403.11152 / Published by ArXiv / on (web) Publishing site
7 Ethic Impact
References


Trust in AI: Progress, Challenges, and Future Directions / 2403.14680 / ISBN:https://doi.org/10.48550/arXiv.2403.14680 / Published by ArXiv / on (web) Publishing site
1. Introduction
3. Findings
4. Discussion
Reference


AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps / 2403.14681 / ISBN:https://doi.org/10.48550/arXiv.2403.14681 / Published by ArXiv / on (web) Publishing site
Method
Results
AI Ethics Development Phases Based on Keyword Analysis
Key AI Ethics Issues
References
Authors bios


Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation / 2403.14706 / ISBN:https://doi.org/10.48550/arXiv.2403.14706 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Methodology
Data
Results
Conclusion
Web Appendix A: Analysis of the Disinformation Manipulations


The Journey to Trustworthy AI- Part 1 Pursuit of Pragmatic Frameworks / 2403.15457 / ISBN:https://doi.org/10.48550/arXiv.2403.15457 / Published by ArXiv / on (web) Publishing site
1 Context
4 AI Regulation: Current Global Landscape
5 Risk
8 Implementation Framework
9 A Few Suggestions for a Viable Path Forward
11 About the Authors
A Appendix
References


Analyzing Potential Solutions Involving Regulation to Escape Some of AI's Ethical Concerns / 2403.15507 / ISBN:https://doi.org/10.48550/arXiv.2403.15507 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Various AI Ethical Concerns
A Possible Solution to These Concerns With Business Self-Regulation
A Possible Solution to These Concerns With Government Regulation
References


The Pursuit of Fairness in Artificial Intelligence Models A Survey / 2403.17333 / ISBN:https://doi.org/10.48550/arXiv.2403.17333 / Published by ArXiv / on (web) Publishing site
3 Conceptualizing Fairness and Bias in ML
5 Ways to mitigate bias and promote Fairness
6 How Users can be affected by unfair ML Systems
References


Domain-Specific Evaluation Strategies for AI in Journalism / 2403.17911 / ISBN:https://doi.org/10.48550/arXiv.2403.17911 / Published by ArXiv / on (web) Publishing site
References


Power and Play Investigating License to Critique in Teams AI Ethics Discussions / 2403.19049 / ISBN:https://doi.org/10.48550/arXiv.2403.19049 / Published by ArXiv / on (web) Publishing site
1 Introduction and Related Work
3 RQ1: What Factors Influence Members’ “Licens to Critique” when Discussing AI Ethics with their Team?
References


Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness / 2403.20089 / ISBN:https://doi.org/10.48550/arXiv.2403.20089 / Published by ArXiv / on (web) Publishing site
References


AI Act and Large Language Models (LLMs): When critical issues and privacy impact require human and ethical oversight / 2404.00600 / ISBN:https://doi.org/10.48550/arXiv.2404.00600 / Published by ArXiv / on (web) Publishing site
6. Large Language Models (LLMs) - Introduction
7. Artificial intelligence Liability
9. References


Exploring the Nexus of Large Language Models and Legal Systems: A Short Survey / 2404.00990 / ISBN:https://doi.org/10.48550/arXiv.2404.00990 / Published by ArXiv / on (web) Publishing site
Abstract
2 Applications of Large Language Models in Legal Tasks
4 Legal Problems of Large Languge Models
5 Data Resources for Large Language Models in Law
References


A Review of Multi-Modal Large Language and Vision Models / 2404.01322 / ISBN:https://doi.org/10.48550/arXiv.2404.01322 / Published by ArXiv / on (web) Publishing site
Abstract
2 What is a Language Model?
4 Specific Large Language Models
5 Vision Models and Multi-Modal Large Language Models
6 Model Tuning
7 Model Evaluation and Benchmarking
8 Conclusions
References


Balancing Progress and Responsibility: A Synthesis of Sustainability Trade-Offs of AI-Based Systems / 2404.03995 / ISBN:https://doi.org/10.48550/arXiv.2404.03995 / Published by ArXiv / on (web) Publishing site
III. Study Design
IV. Results


Designing for Human-Agent Alignment: Understanding what humans want from their agents / 2404.04289 / ISBN:https://doi.org/10.1145/3613905.3650948 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background
3 Method
4 Findings
5 Discussion
References


Is Your AI Truly Yours? Leveraging Blockchain for Copyrights, Provenance, and Lineage / 2404.06077 / ISBN:https://doi.org/10.48550/arXiv.2404.06077 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Preliminaries
III. Proposed Design: IBIS
IV. Detailed Construction
V. Implementation on DAML
References


Frontier AI Ethics: Anticipating and Evaluating the Societal Impacts of Generative Agents / 2404.06750 / ISBN:https://arxiv.org/abs/2404.06750 / Published by ArXiv / on (web) Publishing site
A Primer
Generative Agents in Society
References


Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation / 2403.14706 / ISBN:https://doi.org/10.48550/arXiv.2403.14706 / Published by ArXiv / on (web) Publishing site
Bibliography


Ethical Implications of ChatGPT in Higher Education: A Scoping Review / 2311.14378 / ISBN:https://doi.org/10.48550/arXiv.2311.14378 / Published by ArXiv / on (web) Publishing site
Authors


A Critical Survey on Fairness Benefits of Explainable AI / 2310.13007 / ISBN:https://doi.org/10.1145/3630106.3658990 / Published by ArXiv / on (web) Publishing site
Abstract
2 Background
3 Methodology
4 Critical Survey
6 Conclusion and Outlook
References


AI Alignment: A Comprehensive Survey / 2310.19852 / ISBN:https://doi.org/10.48550/arXiv.2310.19852 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Learning from Feedback
3 Learning under Distribution Shift
4 Assurance
5 Governance
6 Conclusion
References


Regulating AI-Based Remote Biometric Identification. Investigating the Public Demand for Bans, Audits, and Public Database Registrations / 2401.13605 / ISBN:https://doi.org/10.48550/arXiv.2401.13605 / Published by ArXiv / on (web) Publishing site
3 Remote Biometric Identification and the AI Act
5 Research Questions
References


Generative Ghosts: Anticipating Benefits and Risks of AI Afterlives / 2402.01662 / ISBN:https://doi.org/10.48550/arXiv.2402.01662 / Published by ArXiv / on (web) Publishing site
Generative Ghosts: A Design Space
Anticipating Benefits and Risks of Generative Ghosts
Discussion
References


Epistemic Power in AI Ethics Labor: Legitimizing Located Complaints / 2402.08171 / ISBN:https://doi.org/10.1145/3630106.3658973 / Published by ArXiv / on (web) Publishing site
2 The Lower Status of Ethics Work within AI Cultures
3 Automated Model Cards: Legitimacy via Quantified Objectivity
5 Alternative AI Ethics: Space for Embodied Complaints
References


PoliTune: Analyzing the Impact of Data Selection and Fine-Tuning on Economic and Political Biases in Large Language Models / 2404.08699 / ISBN:https://doi.org/10.48550/arXiv.2404.08699 / Published by ArXiv / on (web) Publishing site
3 Methodology
References


Detecting AI Generated Text Based on NLP and Machine Learning Approaches / 2404.10032 / ISBN:https://doi.org/10.48550/arXiv.2404.10032 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
II. Literature Review
III. Proposed Methodology
V. Conclusion
References


Debunking Robot Rights Metaphysically, Ethically, and Legally / 2404.10072 / ISBN:https://doi.org/10.48550/arXiv.2404.10072 / Published by ArXiv / on (web) Publishing site
2 Robot Rights: the Debate
3 The Robots at Issue
4 The Machines Like us Argument: Mistaking the Map for the Territory
6 Posthumanism
7 The Legal Perspective
8 The Troubling Implications of Legal Rationales for Robot Rights
References


Characterizing and modeling harms from interactions with design patterns in AI interfaces / 2404.11370 / ISBN:https://doi.org/10.48550/arXiv.2404.11370 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Scoping Review of Design Patterns, Affordances, and Harms in AI Interfaces
4 DECAI: Design-Enhanced Control of AI Systems
5 Case Studies
References


Taxonomy to Regulation: A (Geo)Political Taxonomy for AI Risks and Regulatory Measures in the EU AI Act / 2404.11476 / ISBN:https://doi.org/10.48550/arXiv.2404.11476 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
3 A Geo-Political AI Risk Taxonomy
4 European Union Artificial Intelligence Act
5 Conclusion
References


Just Like Me: The Role of Opinions and Personal Experiences in The Perception of Explanations in Subjective Decision-Making / 2404.12558 / ISBN:https://doi.org/10.48550/arXiv.2404.12558 / Published by ArXiv / on (web) Publishing site
2 Method
3 Results
4 Discussin and Implications
References


Large Language Model Supply Chain: A Research Agenda / 2404.12736 / ISBN:https://doi.org/10.48550/arXiv.2404.12736 / Published by ArXiv / on (web) Publishing site
3 LLM Infrastructure
4 LLM Lifecycle
5 Downstream Ecosystem
References


The Necessity of AI Audit Standards Boards / 2404.13060 / ISBN:https://doi.org/10.48550/arXiv.2404.13060 / Published by ArXiv / on (web) Publishing site
2 Audit the process, not just the product
5 Conclusion
References


Modeling Emotions and Ethics with Large Language Models / 2404.13071 / ISBN:https://doi.org/10.48550/arXiv.2404.13071 / Published by ArXiv / on (web) Publishing site
1 Introduction
References


From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap / 2404.13131 / ISBN:https://doi.org/10.1145/3630106.3658951 / Published by ArXiv / on (web) Publishing site
2 Disentangling Replicability of Model Performance Claiim and Replicability of Social Claim
References


A Practical Multilevel Governance Framework for Autonomous and Intelligent Systems / 2404.13719 / ISBN:https://doi.org/10.48550/arXiv.2404.13719 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Comprehensive Governance of Emerging Technologies
III. A Practical Multilevel Governance Framework for AIs
IV. Application of the Framework for the Development of AIs
V. Conclusion


Beyond Personhood: Agency, Accountability, and the Limits of Anthropomorphic Ethical Analysis / 2404.13861 / ISBN:https://doi.org/10.48550/arXiv.2404.13861 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Mechanistic Agency: A Common View in AI Practice
3 Volitional Agency: an Alternative Approach
References


Designing Safe and Engaging AI Experiences for Children: Towards the Definition of Best Practices in UI/UX Design / 2404.14218 / ISBN:https://doi.org/10.48550/arXiv.2404.14218 / Published by ArXiv / on (web) Publishing site
4 Metrics for Assessing Trustworthiness, Reliability, and Safety in Human-AI Interaction
References


AI Procurement Checklists: Revisiting Implementation in the Age of AI Governance / 2404.14660 / ISBN:https://doi.org/10.48550/arXiv.2404.14660 / Published by ArXiv / on (web) Publishing site
1 Technical assessments require an AI expert to complete — and we don’t have enough experts
3 Substantive and Procedural Transparency are Necessary for Deploying Effective and Ethical AI systems


Fairness in AI: challenges in bridging the gap between algorithms and law / 2404.19371 / ISBN:https://doi.org/10.48550/arXiv.2404.19371 / Published by ArXiv / on (web) Publishing site
II. Discrimination in Law
IV. Criteria for the Selection of Fairness Methods
References


War Elephants: Rethinking Combat AI and Human Oversight / 2404.19573 / ISBN:https://doi.org/10.48550/arXiv.2404.19573 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background
3 Lessons from History: War Elephants
4 Discussion
References


Not a Swiss Army Knife: Academics' Perceptions of Trade-Offs Around Generative Artificial Intelligence Use / 2405.00995 / ISBN:https://doi.org/10.48550/arXiv.2405.00995 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
3 Method
4 Findings
5 Discussion
References


A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law / 2405.01769 / ISBN:https://doi.org/10.48550/arXiv.2405.01769 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related Surveys
3 Finance
4 Medicine and Healthcar
5 Law
6 Ethics
References


AI-Powered Autonomous Weapons Risk Geopolitical Instability and Threaten AI Research / 2405.01859 / ISBN:https://doi.org/10.48550/arXiv.2405.01859 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Current State of AWS


Responsible AI: Portraits with Intelligent Bibliometrics / 2405.02846 / ISBN:https://doi.org/10.48550/arXiv.2405.02846 / Published by ArXiv / on (web) Publishing site
I. Introduction
III. Data and Methodology
IV. Bibliometric Portraits of Responsible AI
References
Authors


Exploring the Potential of the Large Language Models (LLMs) in Identifying Misleading News Headlines / 2405.03153 / ISBN:https://doi.org/10.48550/arXiv.2405.03153 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Related Work
4 Results
5 Discussion
6 Conclusion
References


Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence / 2405.03825 / ISBN:https://doi.org/10.48550/arXiv.2405.03825 / Published by ArXiv / on (web) Publishing site
3 Proposed Organizational Forms
4 Interaction Mechanisms
References


A Fourth Wave of Open Data? Exploring the Spectrum of Scenarios for Open Data and Generative AI / 2405.04333 / ISBN:https://doi.org/10.48550/arXiv.2405.04333 / Published by ArXiv / on (web) Publishing site
Glossary of Terms
Executive Summary
1. Introduction
3. A Spectrum of Scenarios of Open Data for Generative AI
4. Open Data Requirements And Diagnostic
5. Recommendations for Advancing Open Data in Generative AI
Appendix


Guiding the Way: A Comprehensive Examination of AI Guidelines in Global Media / 2405.04706 / ISBN:https://doi.org/10.48550/arXiv.2405.04706 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Theoretical Framework
3 Data and Methods
4 Results
5 Discussion and conclusions
References


Trustworthy AI-Generative Content in Intelligent 6G Network: Adversarial, Privacy, and Fairness / 2405.05930 / ISBN:https://doi.org/10.48550/arXiv.2405.05930 / Published by ArXiv / on (web) Publishing site
Abstract
I. Introduction
II. Trustworthy AIGC in 6G Network
IV. Privacy of AIGC in 6G Network
V. Fairness of AIGC in 6G Network
VI. Case Study
References


RAI Guidelines: Method for Generating Responsible AI Guidelines Grounded in Regulations and Usable by (Non-)Technical Roles / 2307.15158 / ISBN:https://doi.org/10.48550/arXiv.2307.15158 / Published by ArXiv / on (web) Publishing site
2 Related Work
4 Method for Generating Responsible AI Guidelines
5 Evaluation of the 22 Responsible AI Guidelines
6 Discussion
References
A Additional Materials for the User Study
B Mapping Guidelines with EU AI Act Articles


Redefining Qualitative Analysis in the AI Era: Utilizing ChatGPT for Efficient Thematic Analysis / 2309.10771 / ISBN:https://doi.org/10.48550/arXiv.2309.10771 / on (web) Publishing site
Abstract
3 Methods
4 Users’ Experiences and Challenges with ChatGPT
5 Analyses of the Design Process
7 Discussion
References


XXAI: Towards eXplicitly eXplainable Artificial Intelligence / 2401.03093 / ISBN:https://doi.org/10.48550/arXiv.2401.03093 / Published by ArXiv / on (web) Publishing site
1. Introduction
4. Discussion of the problems of symbolic AI and ways to overcome them
5. Conclusions and prospects
References


Should agentic conversational AI change how we think about ethics? Characterising an interactional ethics centred on respect / 2401.09082 / ISBN:https://doi.org/10.48550/arXiv.2401.09082 / Published by ArXiv / on (web) Publishing site
Introduction
Evaluating a system as a social actor
Social-interactional harms
Design implications for LLM agents
Conclusion
References


Unsocial Intelligence: an Investigation of the Assumptions of AGI Discourse / 2401.13142 / ISBN:https://doi.org/10.48550/arXiv.2401.13142 / Published by ArXiv / on (web) Publishing site
References


Not My Voice! A Taxonomy of Ethical and Safety Harms of Speech Generators / 2402.01708 / ISBN:https://doi.org/10.48550/arXiv.2402.01708 / Published by ArXiv / on (web) Publishing site
2 Related Work
3 Overview of Speech Generation
6 Taxonomy of Harms
7 Discussion
References
A Appendix


The Wolf Within: Covert Injection of Malice into MLLM Societies via an MLLM Operative / 2402.14859 / ISBN:https://doi.org/10.48550/arXiv.2402.14859 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
4. Experiments
References


Social Choice Should Guide AI Alignment in Dealing with Diverse Human Feedback / 2404.10271 / ISBN:https://doi.org/10.48550/arXiv.2404.10271 / Published by ArXiv / on (web) Publishing site
7. Which Traditional Social-Choice-Theoretic Concepts Are Most Relevant?
8. How Should We Account for Behavioral Aspects and Human Cognitive Structures?
Acknowledgements
References


A scoping review of using Large Language Models (LLMs) to investigate Electronic Health Records (EHRs) / 2405.03066 / ISBN:https://doi.org/10.48550/arXiv.2405.03066 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Materials
3 Results
4 Discussion
5 Conclusions
References


Integrating Emotional and Linguistic Models for Ethical Compliance in Large Language Models / 2405.07076 / ISBN:https://doi.org/10.48550/arXiv.2405.07076 / Published by ArXiv / on (web) Publishing site
2 Related Work
References
Appendix S: Multiple Adversarial LLMs
Appendix E: “To My Sister” of Different Linguistic Behaviors


Using ChatGPT for Thematic Analysis / 2405.08828 / ISBN:https://doi.org/10.48550/arXiv.2405.08828 / Published by ArXiv / on (web) Publishing site
3 Pilot-testing: UN Policy Documents Thematic Analysis Supported by GPT
4 Validation Using Topic Modeling
5 Discussion and Limitations
9 Appendix
References


When AI Eats Itself: On the Caveats of Data Pollution in the Era of Generative AI / 2405.09597 / ISBN:https://doi.org/10.48550/arXiv.2405.09597 / Published by ArXiv / on (web) Publishing site
2 RQ1: What Happens When AI Eats Itself ?
3 RQ2: What Technical Strategies Can Be Employed to Mitigate the Negative Consequences of AI Autophagy?
4 RQ3: Which Regulatory Strategies Can Be Employed to Address These Negative Consequences?
7 References


Cyber Risks of Machine Translation Critical Errors : Arabic Mental Health Tweets as a Case Study / 2405.11668 / ISBN:https://doi.org/10.48550/arXiv.2405.11668 / Published by ArXiv / on (web) Publishing site
2.MT Critical Errors
4.Error Analysis
6. Conclusion
7. Bibliographical References


The Narrow Depth and Breadth of Corporate Responsible AI Research / 2405.12193 / ISBN:https://doi.org/10.48550/arXiv.2405.12193 / Published by ArXiv / on (web) Publishing site
4 The Narrow Depth of Industry’s Responsible AI Research
5 The Narrow Breadth of Industry’s Responsible AI Research
References
S1 Additional Analyses on Engagement Analysis
S2 Additional Analyses on Linguistic Analysis


Pragmatic auditing: a pilot-driven approach for auditing Machine Learning systems / 2405.13191 / ISBN:https://doi.org/10.48550/arXiv.2405.13191 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related Work
3 The Audit Procedure
5 Lessons Learned from the Pilots
6 Conclusion and Outlook
References
B The Different Types of Auditing


A Comprehensive Overview of Large Language Models (LLMs) for Cyber Defences: Opportunities and Directions / 2405.14487 / ISBN:https://doi.org/10.48550/arXiv.2405.14487 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Threat Intelligence
IV. Network Security
V. Privacy Preservation
VI. Awareness
VIII. Ethical LLMs
IX. Challenges and Open Problems
References


Towards Clinical AI Fairness: Filling Gaps in the Puzzle / 2405.17921 / ISBN:https://doi.org/10.48550/arXiv.2405.17921 / Published by ArXiv / on (web) Publishing site
Methods in clinical AI fairness research
Discussion
Methods
Reference
Additional material


The ethical situation of DALL-E 2 / 2405.19176 / ISBN:https://doi.org/10.48550/arXiv.2405.19176 / Published by ArXiv / on (web) Publishing site
5 Technology and society, a complex relationship
6 Technological mediation


The Future of Child Development in the AI Era. Cross-Disciplinary Perspectives Between AI and Child Development Experts / 2405.19275 / ISBN:https://doi.org/10.48550/arXiv.2405.19275 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Anticipated AI Use for Children
3. Discussion
Bibliography


Using Large Language Models for Humanitarian Frontline Negotiation: Opportunities and Considerations / 2405.20195 / ISBN:https://doi.org/10.48550/arXiv.2405.20195 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Related Work
3. Method
5. Interview Results: Opportunities and Concerns of Using LLMs in the Frontline
6. Discussion
A. Appendix


There and Back Again: The AI Alignment Paradox / 2405.20806 / ISBN:https://doi.org/10.48550/arXiv.2405.20806 / Published by ArXiv / on (web) Publishing site
References


Responsible AI for Earth Observation / 2405.20868 / ISBN:https://doi.org/10.48550/arXiv.2405.20868 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Mitigating (Unfair) Bias
3 Secure AI in EO: Focusing on Defense Mechanisms, Uncertainty Modeling and Explainability
4 Geo-Privacy and Privacy-preserving Measures
5 Maintaining Scientific Excellence, Open Data, and Guiding AI Usage Based on Ethical Principles in EO
6 AI&EO for Social Good
7 Responsible AI Integration in Business Innovation and Sustainability
8 Conclusions, Remarks and Future Directions
References


Gender Bias Detection in Court Decisions: A Brazilian Case Study / 2406.00393 / ISBN:https://doi.org/10.48550/arXiv.2406.00393 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
3 Framework
4 Discussion
Ethics Statement
References
A DVC Dataset: Domestic Violence Cases


Transforming Computer Security and Public Trust Through the Exploration of Fine-Tuning Large Language Models / 2406.00628 / ISBN:https://doi.org/10.48550/arXiv.2406.00628 / Published by ArXiv / on (web) Publishing site
2 Background, Foundational Studies, and Discussion:
3 Experimental Design, Overview, and Discussion
4 Comparative Analysis of Pre-Trained Models.


How Ethical Should AI Be? How AI Alignment Shapes the Risk Preferences of LLMs / 2406.01168 / ISBN:https://doi.org/10.48550/arXiv.2406.01168 / Published by ArXiv / on (web) Publishing site
II. Risk Characteristics of LLMs
III. Impact of Alignment on LLMs’ Risk Preferences
IV. Impact of Alignments on Corporate Investment Forecasts
V. Robustness: Transcript Readability and Investment Score Predictability
VI. Conclusions
Figures and tables


Evaluating AI fairness in credit scoring with the BRIO tool / 2406.03292 / ISBN:https://doi.org/10.48550/arXiv.2406.03292 / Published by ArXiv / on (web) Publishing site
3 ML model construction
4 Fairness violation analysis in BRIO
5 Risk assessment in BRIO
References


Promoting Fairness and Diversity in Speech Datasets for Mental Health and Neurological Disorders Research / 2406.04116 / ISBN:https://doi.org/10.48550/arXiv.2406.04116 / Published by ArXiv / on (web) Publishing site
4. Desiderata
5. Methodology
6. Discussion
7. Conclusions
References
Appendix A. Terminology


MoralBench: Moral Evaluation of LLMs / 2406.04428 / Published by ArXiv / on (web) Publishing site
1 Introduction
References


Can Prompt Modifiers Control Bias? A Comparative Analysis of Text-to-Image Generative Models / 2406.05602 / Published by ArXiv / on (web) Publishing site
2. Related Work
References


Deception Analysis with Artificial Intelligence: An Interdisciplinary Perspective / 2406.05724 / ISBN:https://doi.org/10.48550/arXiv.2406.05724 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Theories and Components of Deception
3 Reductionism & Previous Research in Deceptive AI
4 DAMAS: A MAS Framework for Deception Analysis
References


The Impact of AI on Academic Research and Publishing / 2406.06009 / Published by ArXiv / on (web) Publishing site
Introduction
Ethics of AI for Writing Papers
References


An Empirical Design Justice Approach to Identifying Ethical Considerations in the Intersection of Large Language Models and Social Robotics / 2406.06400 / ISBN:https://doi.org/10.48550/arXiv.2406.06400 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Theoretical Background
3 Methodology
4 Findings
6 Conclusions and Recommendations
References
Appendix B: Collected data summary


The Ethics of Interaction: Mitigating Security Threats in LLMs / 2401.12273 / ISBN:https://doi.org/10.48550/arXiv.2401.12273 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Why Ethics Matter in LLM Attacks?
3 Potential Misuse and Security Concerns
4 Towards Ethical Mitigation: A Proposed Methodology
6 Ethical Response to LLM Attacks


Global AI Governance in Healthcare: A Cross-Jurisdictional Regulatory Analysis / 2406.08695 / ISBN:https://doi.org/10.48550/arXiv.2406.08695 / Published by ArXiv / on (web) Publishing site
4 Global Regulatory Landscape of AI
5 Generative AI: The New Frontier
References
A Supplemental Tables


Fair by design: A sociotechnical approach to justifying the fairness of AI-enabled systems across the lifecycle / 2406.09029 / ISBN:https://doi.org/10.48550/arXiv.2406.09029 / Published by ArXiv / on (web) Publishing site
2 Fairness and AI
3 Assuring fairness across the AI lifecycle
4 Assuring AI fairness in healthcare
References


Some things never change: how far generative AI can really change software engineering practice / 2406.09725 / ISBN:https://doi.org/10.48550/arXiv.2406.09725 / Published by ArXiv / on (web) Publishing site
3 Methodology
4 Results
REFERENCES


Federated Learning driven Large Language Models for Swarm Intelligence: A Survey / 2406.09831 / ISBN:https://doi.org/10.48550/arXiv.2406.09831 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Foundations and Integration of SI and LLM
III. Federated LLMs for Smarm Intelligence
References


Applications of Generative AI in Healthcare: algorithmic, ethical, legal and societal considerations / 2406.10632 / ISBN:https://doi.org/10.48550/arXiv.2406.10632 / Published by ArXiv / on (web) Publishing site
III. Analysis
References
Aappendix A Societal aspects
Appendix B Legal aspects
Appendix C Algorithmic / technical aspects


Justice in Healthcare Artificial Intelligence in Africa / 2406.10653 / ISBN:https://doi.org/10.48550/arXiv.2406.10653 / Published by ArXiv / on (web) Publishing site
References


Conversational Agents as Catalysts for Critical Thinking: Challenging Design Fixation in Group Design / 2406.11125 / ISBN:https://doi.org/10.48550/arXiv.2406.11125 / Published by ArXiv / on (web) Publishing site
2 BEYOND RECOMMENDATIONS: ENHANCING CRITICAL THINKING WITH GENERATIVE AI
6 POTENTIAL DESIGN CONSIDERATIONS
REFERENCES


Current state of LLM Risks and AI Guardrails / 2406.12934 / ISBN:https://doi.org/10.48550/arXiv.2406.12934 / Published by ArXiv / on (web) Publishing site
2 Large Language Model Risks
3 Strategies in Securing Large Language models
4 Challenges in Implementing Guardrails
References


Leveraging Large Language Models for Patient Engagement: The Power of Conversational AI in Digital Health / 2406.13659 / ISBN:https://doi.org/10.48550/arXiv.2406.13659 / Published by ArXiv / on (web) Publishing site
II. RECENT ADVANCEMENTS IN LARGE LANGUAGE MODELS
III. CASE STUDIES : APPLICATIONS OF LLM S IN PATIENT ENGAGEMENT
IV. DISCUSSION AND F UTURE D IRECTIONS
V. CONCLUSION
REFERENCES


Documenting Ethical Considerations in Open Source AI Models / 2406.18071 / ISBN:https://doi.org/10.48550/arXiv.2406.18071 / Published by ArXiv / on (web) Publishing site
Abstract
1 INTRODUCTION
2 RELATED WORK
4 RESULTS
8 ACKNOWLEDGEMENTS
REFERENCES


AI Alignment through Reinforcement Learning from Human Feedback? Contradictions and Limitations / 2406.18346 / ISBN:https://doi.org/10.48550/arXiv.2406.18346 / Published by ArXiv / on (web) Publishing site
3 Limitations of RLxF
References


A Survey on Privacy Attacks Against Digital Twin Systems in AI-Robotics / 2406.18812 / ISBN:https://doi.org/10.48550/arXiv.2406.18812 / Published by ArXiv / on (web) Publishing site
I. INTRODUCTION AND MOTIVATION
II. BACKGROUND
III. ATTACKS ON DT-INTEGRATED AI ROBOTS
IV. DT-INTEGRATED ROBOTICS DESIGN CONSIDERATIONS AND DISCUSSION
V. CONCLUSION
REFERENCES


Staying vigilant in the Age of AI: From content generation to content authentication / 2407.00922 / ISBN:https://doi.org/10.48550/arXiv.2407.00922 / Published by ArXiv / on (web) Publishing site
Art Practice: Human Reactions to Synthetic Fake Content
Emphasizing Reasoning Over Detection
Prospective Usage: Assessing Veracity in Everyday Content
Conclusions and Future Works
References


SecGenAI: Enhancing Security of Cloud-based Generative AI Applications within Australian Critical Technologies of National Interest / 2407.01110 / ISBN:https://doi.org/10.48550/arXiv.2407.01110 / Published by ArXiv / on (web) Publishing site
Abstract
II. UNDERSTANDING GENAI SECURITY
III. CRITICAL ANALYSIS
IV. SECGENAI FRAMEWORK REQUIREMENTS SPECIFICATIONS
V. DISCUSSIONS AND RECOMMENDATIONS
REFERENCES


Artificial intelligence, rationalization, and the limits of control in the public sector: the case of tax policy optimization / 2407.05336 / ISBN:https://doi.org/10.48550/arXiv.2407.05336 / Published by ArXiv / on (web) Publishing site
2. Artificial intelligence as Weberian rationalization
3. Bureaucratization, tax policy, and equality
4. AI-driven tax policy to reduce economic inequality: a thought experiment
6. Conclusion
References


A Blueprint for Auditing Generative AI / 2407.05338 / ISBN:https://doi.org/10.48550/arXiv.2407.05338 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Why audit generative AI systems?
3 How to audit generative AI systems?
4 Governance audits
5 Model audits
6 Application audits
8 Conclusion
Bibliography


Challenges and Best Practices in Corporate AI Governance:Lessons from the Biopharmaceutical Industry / 2407.05339 / ISBN:https://doi.org/10.48550/arXiv.2407.05339 / Published by ArXiv / on (web) Publishing site
2 Case study | AstraZeneca’s AI governance journey
4 Discussion | Best practices and lessons learned


Operationalising AI governance through ethics-based auditing: An industry case study / 2407.06232 / Published by ArXiv / on (web) Publishing site
1. Introduction
6. Lessons learned from AstraZeneca’s 2021 AI audit
7. Limitations
8. Conclusions
REFERENCES
APPENDIX 1


Auditing of AI: Legal, Ethical and Technical Approaches / 2407.06235 / Published by ArXiv / on (web) Publishing site
2 The evolution of auditing as a governance mechanism
3 The need to audit AI systems – a confluence of top-down and bottom-up pressures
References


Why should we ever automate moral decision making? / 2407.07671 / ISBN:https://doi.org/10.48550/arXiv.2407.07671 / Published by ArXiv / on (web) Publishing site
2 Reasons for automated moral decision making
References


Evolving AI Collectives to Enhance Human Diversity and Enable Self-Regulation / 2402.12590 / ISBN:https://doi.org/10.48550/arXiv.2402.12590 / Published by ArXiv / on (web) Publishing site
D. Results for Claude 3


Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models / 2310.19917 / ISBN:https://doi.org/10.48550/arXiv.2310.19917 / Published by ArXiv / on (web) Publishing site
References


Potential Societal Biases of ChatGPT in Higher Education: A Scoping Review / 2311.14381 / ISBN:https://doi.org/10.48550/arXiv.2311.14381 / Published by ArXiv / on (web) Publishing site
REFERENCES


FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare / 2309.12325 / ISBN:https://doi.org/10.48550/arXiv.2309.12325 / Published by ArXiv / on (web) Publishing site
REFERENCES:
Table 1


A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics / 2310.05694 / ISBN:https://doi.org/10.48550/arXiv.2310.05694 / Published by ArXiv / on (web) Publishing site
AUTHORS


Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? / 2308.15399 / ISBN:https://doi.org/10.48550/arXiv.2308.15399 / Published by ArXiv / on (web) Publishing site
C Experimental Details


Bridging the Global Divide in AI Regulation: A Proposal for a Contextual, Coherent, and Commensurable Framework / 2303.11196 / ISBN:https://doi.org/10.48550/arXiv.2303.11196 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Global Divide in AI Regulation: Horizontally. Context-Specific
III. Striking a Balance Betweeen the Two Approaches
IV. Proposing an Alternative 3C Framework


CogErgLLM: Exploring Large Language Model Systems Design Perspective Using Cognitive Ergonomics / 2407.02885 / ISBN:https://doi.org/10.48550/arXiv.2407.02885 / Published by ArXiv / on (web) Publishing site
3. Conceptual Foundations
4. Design Framework
5. Case Studies
References


Past, Present, and Future: A Survey of The Evolution of Affective Robotics For Well-being / 2407.02957 / ISBN:https://doi.org/10.48550/arXiv.2407.02957 / Published by ArXiv / on (web) Publishing site
III. Method
VI. Future Opportunities in Affective Robotivs for Well-Being
References
Authors Bios


With Great Power Comes Great Responsibility: The Role of Software Engineers / 2407.08823 / ISBN:https://doi.org/10.48550/arXiv.2407.08823 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
2 Background and Related Work
3 Future Research Challenges
References


Have We Reached AGI? Comparing ChatGPT, Claude, and Gemini to Human Literacy and Education Benchmarks / 2407.09573 / ISBN:https://doi.org/10.48550/arXiv.2407.09573 / Published by ArXiv / on (web) Publishing site
2 Literature Review
5 Discussion
References


Generative AI for Health Technology Assessment: Opportunities, Challenges, and Policy Considerations / 2407.11054 / ISBN:https://doi.org/10.48550/arXiv.2407.11054 / Published by ArXiv / on (web) Publishing site
Applications of generative AI to evidence generation
Applications of generative AI to clinical trials
Applications of generative AI to health economic modeling
Limitations of generative AI in HTA applications
References


Thorns and Algorithms: Navigating Generative AI Challenges Inspired by Giraffes and Acacias / 2407.11360 / ISBN:https://doi.org/10.48550/arXiv.2407.11360 / Published by ArXiv / on (web) Publishing site
Abstract
4 Generative AI and Humans: Risks and Mitigation
5 Meta Analysis: Limits of the Analogy
6 Discussion
7 Recommendations: Fixing Gen AI’s Value Alignment
References


Prioritizing High-Consequence Biological Capabilities in Evaluations of Artificial Intelligence Models / 2407.13059 / ISBN:https://doi.org/10.48550/arXiv.2407.13059 / Published by ArXiv / on (web) Publishing site
Abstract
Introduction
Proposed Approach to Determining High-Consequence Biological Capabilities of Concern
Next Steps for AI Biosecurity Evaluations


Report on the Conference on Ethical and Responsible Design in the National AI Institutes: A Summary of Challenges / 2407.13926 / ISBN:https://doi.org/10.48550/arXiv.2407.13926 / Published by ArXiv / on (web) Publishing site
4. Coordination between AI Institutes
Acknowledgements


Assurance of AI Systems From a Dependability Perspective / 2407.13948 / ISBN:https://doi.org/10.48550/arXiv.2407.13948 / Published by ArXiv / on (web) Publishing site
1 Introduction: Assurance for Traditional Systems
2 Assurance for Systems Extended with AI and ML
3 Assurance of AI Systems for Specific Functions
4 Assurance for General-Purpose AI
5 Assurance and Alignment for AGI
6 Summary and Conclusion
References


Open Artificial Knowledge / 2407.14371 / ISBN:https://doi.org/10.48550/arXiv.2407.14371 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Key Challenges of Artificial Data
3. OAK Dataset
References


Honest Computing: Achieving demonstrable data lineage and provenance for driving data and process-sensitive policies / 2407.14390 / ISBN:https://doi.org/10.48550/arXiv.2407.14390 / Published by ArXiv / on (web) Publishing site
Abstract
1. Introduction
3. Honest Computing reference specifications
4. Discussion
References


RogueGPT: dis-ethical tuning transforms ChatGPT4 into a Rogue AI in 158 Words / 2407.15009 / ISBN:https://doi.org/10.48550/arXiv.2407.15009 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Background
VI. Discussion
VII. Conclusion
References


Nudging Using Autonomous Agents: Risks and Ethical Considerations / 2407.16362 / ISBN:https://doi.org/10.48550/arXiv.2407.16362 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Technology Mediated Nudging
3 Examples of Biases
References


Mapping the individual, social, and biospheric impacts of Foundation Models / 2407.17129 / ISBN:https://doi.org/10.48550/arXiv.2407.17129 / Published by ArXiv / on (web) Publishing site
2 Theoretical Lens: Expanding Views on Algorithmic Risks and Harms
3 Methods: Snowball and Structured Search
4 Mapping Individual, Social, and Biospheric Impacts of Foundation Models
5 Discussion: Grappling with the Scale and Interconnectedness of Foundation Models
6 Conclusion
Impact Statement
References
A Appendix


Navigating the United States Legislative Landscape on Voice Privacy: Existing Laws, Proposed Bills, Protection for Children, and Synthetic Data for AI / 2407.19677 / ISBN:https://doi.org/10.48550/arXiv.2407.19677 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. American Privacy Rights Act of 2024
3. Children’s Privacy in the US
4. State-level Privacy Regulations in the US
5. Regulations on Synthetic Data for AI


Exploring the Role of Social Support when Integrating Generative AI into Small Business Workflows / 2407.21404 / ISBN:https://doi.org/10.48550/arXiv.2407.21404 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Related Work
4 Findings
6 Discussion and Future Work
References


Deepfake Media Forensics: State of the Art and Challenges Ahead / 2408.00388 / ISBN:https://doi.org/10.48550/arXiv.2408.00388 / Published by ArXiv / on (web) Publishing site
2. Deepfake Detection
4. Passive Deepfake Authentication Methods
5. Deepfakes Detection Method on Realistic Scenarios
6. Active Authentication
VII. Conclusion
References


Integrating ESG and AI: A Comprehensive Responsible AI Assessment Framework / 2408.00965 / ISBN:https://doi.org/10.48550/arXiv.2408.00965 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Background and Literature Review
3 Methodology
4 ESG-AI framework
5 Discussion
References


AI for All: Identifying AI incidents Related to Diversity and Inclusion / 2408.01438 / ISBN:https://doi.org/10.48550/arXiv.2408.01438 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Methodology
4 Results
5 Discussion and Implications
6 Threats to Validity
7 Conclusions and Future Work
References


Surveys Considered Harmful? Reflecting on the Use of Surveys in AI Research, Development, and Governance / 2408.01458 / ISBN:https://doi.org/10.48550/arXiv.2408.01458 / Published by ArXiv / on (web) Publishing site
2 Related Work
4 Large-Scale Surveys of AI in the Literature
5 Discussion
7 Research Ethics and Social Impact
References


Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity / 2408.04023 / ISBN:https://doi.org/10.48550/arXiv.2408.04023 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Related Work
3. Proposed framework
4. Model architecture and training parameters
5. Model Training
6. Results
7. Conclusion and Future Directions
References


AI-Driven Chatbot for Intrusion Detection in Edge Networks: Enhancing Cybersecurity with Ethical User Consent / 2408.04281 / ISBN:https://doi.org/10.48550/arXiv.2408.04281 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Related Work
III. Methodology
IV. Graphical User Interface (GUI)
References


Criticizing Ethics According to Artificial Intelligence / 2408.04609 / ISBN:https://doi.org/10.48550/arXiv.2408.04609 / Published by ArXiv / on (web) Publishing site
1 Preliminary notes
2 Clarifying conceptual ambiguities
4 Exploring epistemic challenges
Bibliography


Between Copyright and Computer Science: The Law and Ethics of Generative AI / 2403.14653 / ISBN:https://doi.org/10.48550/arXiv.2403.14653 / Published by ArXiv / on (web) Publishing site
I. The Why and How Behind LLMs
III. A Guide for Data in LLM Research
IV. The Path Ahead


The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources / 2406.16746 / ISBN:https://doi.org/10.48550/arXiv.2406.16746 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 Data Sources
4 Data Preparation
7 Environmental Impact
8 Model Evaluation
References


Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives / 2407.14962 / ISBN:https://doi.org/10.48550/arXiv.2407.14962 / Published by ArXiv / on (web) Publishing site
II. Generative AI
III. Language Modeling
IV. Challenges of Generative AI and LLMs
References
Authors


VersusDebias: Universal Zero-Shot Debiasing for Text-to-Image Models via SLM-Based Prompt Engineering and Generative Adversary / 2407.19524 / ISBN:https://doi.org/10.48550/arXiv.2407.19524 / Published by ArXiv / on (web) Publishing site
References
Appendices


Speculations on Uncertainty and Humane Algorithms / 2408.06736 / ISBN:https://doi.org/10.48550/arXiv.2408.06736 / Published by ArXiv / on (web) Publishing site
2 The Numbers of the Future
3 Uncertainty Ex Machina
4 Conclusions
References


Visualization Atlases: Explaining and Exploring Complex Topics through Data, Visualization, and Narration / 2408.07483 / ISBN:https://doi.org/10.48550/arXiv.2408.07483 / Published by ArXiv / on (web) Publishing site
Abstract
1 Introduction
3 Visualization Atlas Design Patterns
4 Interviews with Visualization Atlas Creators
6 Key Characteristics of Visualization Atlases
7 Discussion
References


Neuro-Symbolic AI for Military Applications / 2408.09224 / ISBN:https://doi.org/10.48550/arXiv.2408.09224 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Neuro-Symbolic AI
III. Autonomy in Military Weapons Systems
IV. Military Applications of Neuro-Symbolic AI
V. Challenges and Risks
References


Conference Submission and Review Policies to Foster Responsible Computing Research / 2408.09678 / ISBN:https://doi.org/10.48550/arXiv.2408.09678 / Published by ArXiv / on (web) Publishing site
Accurate Reporting and Reproducibility
Use of Generative AI in CS Conference Publications
Conclusions
References


Don't Kill the Baby: The Case for AI in Arbitration / 2408.11608 / ISBN:https://doi.org/10.48550/arXiv.2408.11608 / Published by ArXiv / on (web) Publishing site
Introduction
1. What is AI
3. Practical and Strategic Benefits of Using AI in Arbitration
1. Resistance Against AI Does Not Offer Conclusive Reasons for Outright Rejection
2. Let AI Grow Under Favorable Conditions: Avoiding Overly Moralistic Views


CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher / 2408.11650 / ISBN:https://doi.org/10.48550/arXiv.2408.11650 / Published by ArXiv / on (web) Publishing site
1. Introduction
2. Background and Related Works
3. Methodology
4. Experiment Results
5. Discussion and Future Works
6. Conclusion
References


The Problems with Proxies: Making Data Work Visible through Requester Practices / 2408.11667 / ISBN:https://doi.org/10.48550/arXiv.2408.11667 / Published by ArXiv / on (web) Publishing site
Introduction
Related Work
Findings
Research Ethics and Social Impact
References


Promises and challenges of generative artificial intelligence for human learning / 2408.12143 / ISBN:https://doi.org/10.48550/arXiv.2408.12143 / Published by ArXiv / on (web) Publishing site
1 Main
2 Promises
3 Challenges
4 Needs
References
Tables


Catalog of General Ethical Requirements for AI Certification / 2408.12289 / ISBN:https://doi.org/10.48550/arXiv.2408.12289 / Published by ArXiv / on (web) Publishing site
5 Overall Ethical Requirements (O)
6 Fairness (F)
7 Privacy and Data Protection (P)
9 Sustainability (SU)
10 Transparency and Explainability (T)
11 Truthfulness (TR)


Dataset | Mindset = Explainable AI | Interpretable AI / 2408.12420 / ISBN:https://doi.org/10.48550/arXiv.2408.12420 / Published by ArXiv / on (web) Publishing site
References


Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks / 2408.12806 / ISBN:https://doi.org/10.48550/arXiv.2408.12806 / Published by ArXiv / on (web) Publishing site
I. Introduction
II. Related Work
III. Generative AI
IV. Attack Methodology
References


Has Multimodal Learning Delivered Universal Intelligence in Healthcare? A Comprehensive Survey / 2408.12880 / ISBN:https://doi.org/10.48550/arXiv.2408.12880 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Preliminaries
3 Multimodal Medical Studies
4 Contrastice Foundation Models (CFMs)
5 Multimodal LLMs (MLLMs)
6 Discussions of Current Studies
7 Challenges and Future Directions
References
Appendix


Aligning XAI with EU Regulations for Smart Biomedical Devices: A Methodology for Compliance Analysis / 2408.15121 / ISBN:https://doi.org/10.48550/arXiv.2408.15121 / Published by ArXiv / on (web) Publishing site
3 Methodology
4 Background
5 Explanation Requirements and Legal Explanatory Goals
6 A Categorisation of XAI in Terms of Explanatory Goals
8 Instructions for Use & Discussion of Findings
9 Threats to Validity
References


What Is Required for Empathic AI? It Depends, and Why That Matters for AI Developers and Users / 2408.15354 / ISBN:https://doi.org/10.48550/arXiv.2408.15354 / Published by ArXiv / on (web) Publishing site
Three Empathic AI Use Cases in Medicine
“Fine cuts” of Empathy: Capabilities and Distinctions under the Empathy Umbrella
What Empathic Capabilities Do AIs Need?
Implications for AI Creators and Users
References


Trustworthy and Responsible AI for Human-Centric Autonomous Decision-Making Systems / 2408.15550 / ISBN:https://doi.org/10.48550/arXiv.2408.15550 / Published by ArXiv / on (web) Publishing site
1 Introduction
2 Trustworthy and Responsible AI Definition
3 Governance for Human-Centric Intelligence Systems
4 Biases
5 Trustworthy and Responsible AI in Human-centric Applications
6 Open Challenges
7 Guidelines and Recommendations
8 Conclusion and Final Remarks
References


A Survey for Large Language Models in Biomedicine / 2409.00133 / ISBN:https://doi.org/10.48550/arXiv.2409.00133 / Published by ArXiv / on (web) Publishing site
1 Introduction
3 LLMs in Zero-Shot Biomedical Applications
4 Adapting General LLMs to the Biomedical Field
5 Discussion
References


Digital Homunculi: Reimagining Democracy Research with Generative Agents / 2409.00826 / ISBN:https://doi.org/10.48550/arXiv.2409.00826 / Published by ArXiv / on (web) Publishing site
2. The Experimentation Bottleneck
3. How GenAI Could Make a Difference
4. Risks and Caveats
5. Annoyances or Dealbreakers?
References


The overlooked need for Ethics in Complexity Science: Why it matters / 2409.02002 / ISBN:https://doi.org/10.48550/arXiv.2409.02002 / Published by ArXiv / on (web) Publishing site
Mapping ethical challenges in complexity science
Practical considerations for ethical actions in complexity science
References


AI Governance in Higher Education: Case Studies of Guidance at Big Ten Universities / 2409.02017 / ISBN:https://doi.org/10.48550/arXiv.2409.02017 / Published by ArXiv / on (web) Publishing site
Background
Methods
Results
Discussion
Conclusion
Ethic Statement
References


Preliminary Insights on Industry Practices for Addressing Fairness Debt / 2409.02432 / ISBN:https://doi.org/10.48550/arXiv.2409.02432 / Published by ArXiv / on (web) Publishing site
Abstract
3 Method
4 Findings


DetoxBench: Benchmarking Large Language Models for Multitask Fraud & Abuse Detection / 2409.06072 / ISBN:https://doi.org/10.48550/arXiv.2409.06072 / Published by ArXiv / on (web) Publishing site
2 Prior Benchmarks
3 Data Details
7 Limitations
8 Dataset Disclaimers and Terms
10 Appendix


Exploring AI Futures Through Fictional News Articles / 2409.06354 / ISBN:https://doi.org/10.48550/arXiv.2409.06354 / Published by ArXiv / on (web) Publishing site
Reflections from two workshop participants
Discussion and conclusion


The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources / 2406.16746 / ISBN:https://doi.org/10.48550/arXiv.2406.16746 / Published by ArXiv / on (web) Publishing site
B Cheatsheet Samples


Catalog of General Ethical Requirements for AI Certification / 2408.12289 / ISBN:https://doi.org/10.48550/arXiv.2408.12289 / Published by ArXiv / on (web) Publishing site
References